APPENDIX

1 ADDITIONAL RESULTS
1.1 VS

Evaluation of image resolution. In Figure 1, we evaluate the
capability of CoordNet, NeRV, and InSituNet in generating
images with different resolutions using the vortex data set.
Both CoordNet and InSituNet produce satisfactory results
under 256 image resolution. However, taking a closer com-
parison, the image generated by InSituNet includes noise,
and the features are not preserved well, for example, at
the bottom region. Using the resolutions of 512 and 1,024,
CoordNet is the clear winner, while InSituNet does not
produce acceptable results. This is because InSituNet only
has hundreds of training images, and most GAN-based
architectures do not have enough capacity to generate high-
resolution images (e.g., 512 and 1,024) [1], [2], [3], [4].
Besides qualitative analysis, Table 1 reports average PSNR
and LPIPS values. Compared with NeRV and InSituNet,
CoordNet achieves the best PSNR and LPIPS values under
different image resolutions.

TABLE 1: Average PSNR (dB) and LPIPS for the VS task
under different image resolutions using the vortex data set.

resolution method PSNR 1+ LPIPS |
NeRV 20.96 0.144

256 InSituNet 19.38 0.162
CoordNet 22.84 0.083

NeRV 20.89 0.201

512 InSituNet 19.50 0.190
CoordNet 23.30 0.105

NeRV 19.75 0.255

1,024 InSituNet 20.36 0.193
CoordNet 23.74 0.129

Additional results. Figure 2 displays the synthesized
images under different view parameters using the Tangaroa
(V) data sets. As these images show, CoordNet preserves the
overall shapes and details under diversified view parame-
ters.

1.2 AOP

Figure 3 shows the volume rendering results with LAO.
The difference image is displayed in the top-left corner for
each approach. As the difference images indicate, CoordNet
produces fewer differences than other methods.

1.3 TSR

Unsupervised time interpolation. Since CoordNet treats
the coordinates as a continuous function; it can interpolate
an arbitrary number of intermediate time steps, which is
impossible with TSR-TVD. We produce six non-integer time
steps between two neighboring time steps and compare
their temporal coherence with LERP. The isosurface render-
ing results are shown in Figure 4. We can observe how the
isosurfaces smoothly grow (refer to the red ellipses) and
merge (refer to the blue ellipses) based on the rendering
results generated by CoordNet, while LERP does not exhibit
such smooth temporal variations.

Volume rendering results. Figure 5 shows the volume
rendering results among TSR-TVD, CoordNet, and GT. For
the combustion (MF) data set, TSR-TVD does not produce
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Fig. 1: Comparison of synthesized volume rendering images
for the VS task under different image resolutions using the
vortex data set. Top to bottom: 256, 512, and 1,024 image
resolutions.

the green part at the bottom-left corner and the yellow part
at the top-right corner well, while CoordNet preserves those
details. For the half-cylinder (6400,V) and ionization (H2)
data sets, both methods produce similar rendering results
compared with GT. But taking a close comparison, the image
produced by TSR-TVD contains more artifacts.

Slice of volume rendering results. Figure 6 shows a slice
of volume rendering results for the TSR task. These results
indicate the sharpness of the synthesized data generated by
CoordNet.

Discussion. Compared with TSR-TVD, CoordNet
achieves better visual quality (direct volume rendering and
isosurface rendering) and better quantitative scores. Besides,
CoordNet has the following advantages. (1) The interpola-
tion process is unsupervised, which means CoordNet does
not require to see the complete subsequence of early time
steps for training. (2) Given two time steps, CoordNet can
synthesize arbitrary numbers of time steps with coherent
and high-quality results, while TSR-TVD needs to perform
this recursively (i.e., the synthesized time steps are fed into
TSR-TVD to produce new time steps), and the performance
cannot be guaranteed due to error accumulation in the
recursive process. (3) CoordNet can operate in non-uniform
sampling cases, while TSR-TVD only assumes the time steps
are selected uniformly.

1.4 SSR

Unsupervised space interpolation. Because CoordNet pro-
cesses the SSR task without supervision, it can produce
higher-resolution volumes. That is, we can assume the
original volumes (e.g., 128%) are subsampled from higher-
resolution volumes (e.g., 512%), utilize these original vol-
umes to train CoordNet, and inferCoordNet to synthesize
higher-resolution ones. We use the vortex (128 x 128 x 128)
and ionization (PD) (600 x 248 x 248) data sets to train
CoordNet and produce volumes with higher-resolution (i.e.,
vortex with 512 x 512 x 512 and ionization (PD) with
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Fig. 2: Volume rendering results for the VS task under different view parameters (6, ¢) using the Tangaroa (V) data set.

Top: CoordNet. Bottom: GT.

(a) GT wo. LAO

(b) LAO (©) V2v

(d) DVAO (e) CoordNet (f) GT w. LAO

Fig. 3: Zoom-in volume rendering with LAO results for the AOP task. Top to bottom: argon bubble, earthquake, half-

cylinder (6400, VM), and Tangaroa (VM)

2400 x 992 x 992). We compare our results against Bl. As
displayed in Figure 7, CoordNet produces sharper results
with fewer artifacts compared with BI (refer to the arrows
in the images).

Additional results. Figure 8 displays the volume render-
ing results of the argon bubble, earthquake, and Tangaroa
(VM) data sets. Compared with BI, CoordNet produces
closer results in both shape and texture.

Slice of volume rendering results. Figure 9 shows a
slice of volume rendering results for the SSR task. These
results indicate that CoordNet preserves the sharpness and
smoothness of the synthesized data.

Isosurface rendering results. Figure 10 shows the iso-
surface rendering results among SSR-TVD, CoordNet, and
GT. Both SSR-TVD and CoordNet produce close isosurface
results of the combustion (HR) data set compared with
GT, but SSR-TVD misses some isosurfaces at the top-right
corner. For the ionization (PD) data set, SSR-TVD extracts
the isosurfaces with artifacts and does not preserve the
isosurface’s shape in the feature region. For the vortex data
set, CoordNet generates more similar isosurfaces compared
to GT. For example, SSR-TVD cannot reconstruct the isosur-
faces at the top-left corner.

Discussion. Compared with SSR-TVD, CoordNet
achieves better visual quality and similar quantitative val-
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Fig. 4: Zoom-in isosurface rendering results for the TSR task using the half-cylinder (640,V) data set. Top: LERP. Bottom:
CoordNet. We generate 576 time steps from sparsely sampled 25 time steps. The chosen isovalue is —0.7.
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ues. Still, CoordNet offers the following benefits. (1) The
upscaling operation is completed in an unsupervised fash-
ion. This means we do not need to store high- and low-
resolution pairs for optimization. (2) CoordNet can upscale
high resolution (e.g., 600 x 248 x 248) to higher resolution
(e.g., 2400 x 992 x 992).

2 HYPERPARAMETER STUDY

We further study the hyperparameters of CoordNet in the
following aspects.
2.1 Sample Size (N)

To study the impact of sample size, we train CoordNet using
different N for the TSR task. Table 2 reports the average
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Fig. 5: Volume rendering results for the TSR task with an interpolation interval of 3. Top to bottom: combustion (MF),

half-cylinder (640,V), and ionization (H2). The displayed time steps are 95, 75, and 75, respectively. From top to bottom,
left and right observations are 93 and 97, 73 and 77, 73 and 77.

PSNR, LPIPS, and training time under different sample
sizes. The average PSNR and LPIPS are improved as we
sample more voxels. However, the improvement becomes
marginal as the sample size reaches 128K. In addition, as
shown in Figure 13, the quality of rendering results benefits
from the larger sample size. However, once N reaches 256K
and 512K, the performance degrades since CoordNet begins
to overfit the training data. Therefore, we suggest that the
sample size should be 128K.

2.2 Number of Initial Neurons (m)

We optimize CoordNet using different numbers of m for
the SSR task to determine an appropriate number of initial
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Fig. 7. Zoom-in volume rendering results for the SSR task.
Top: ionization (PD). Bottom: vortex. For the ionization (PD)
data set, we generate 2400 x 992 x 992 volumes from 600 x
248 x 248 ones. For the vortex data set, we generate 512 x
512 x 512 volumes from 128 x 128 x 128 ones.

c) CoordNet

neurons. Table 3 reports the average PSNR, LPIPS, training
time, and model size under different numbers of m. In
general, the average PSNR and LPIPS can be improved if a
larger number of neurons is set. However, it takes longer to
train, and more parameters need to be saved. Moreover, as
shown in Figure 11, the quality of the rendering result is the
best with 64 initial neurons. Beyond that, CoordNet could
jump into overfitting, which decreases the performance.
Therefore, we suggest that the number of initial neurons
should be 64.

2.3 Choice of Network Depth (d)

To choose an appropriate network depth, we apply different
d to train CoordNet for VS task under 512 image resolu-
tion. As displayed in Figure 12, we can observe that as d
increases, the result can be improved. However, there is
no significant difference between d = 10 and d = 15. In
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Fig. 6: Slice of volume rendering results for the TSR task with an interpolation interval of 3. Top to bottom: combustion
(MF), half-cylinder (640,V), ionization (H2), and Tangaroa (V). The displayed time steps are 95, 75, 75, and 147, respectively.
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Fig. 8: Volume rendering results for the SSR task with
an upscaling factor of 4x. Top to bottom: argon bubble,
earthquake, and Tangaroa (VM).

Table 4, we report the average PSNR, LPIPS, and model size
under different d. The quantitative metrics are better as d
gets larger. However, the increment is small when d changes
from 10 to 15. Thus, we choose the network depth as 10 for
CoordNet.

TABLE 2: Average PSNR (dB), LPIPS values, and training
time per epoch (in second) using the vortex data set under
different numbers of sampled coordinates for the TSR task.

#coordinates PSNR 1 LPIPS| train
32K 31.87 0.143 9.77
64K  35.56 0.103 20.41
128K 38.92 0.066 40.53
256K  39.68 0.058 90.55
512K 40.75 0.051 202.69
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Fig. 9: Slice of volume rendering results for the SSR task with an upscaling factor of 4x. Top to bottom: combustion (HR),
ionization (PD), ionization (T), and vortex.
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Fig. 10: Isosurface rendering results for the SSR task with an upscaling factor of 4x. Top to bottom: combustion (HR),
ionization (PD), ionization (T), and vortex. The chosen isovalues are 0.4, —0.4, —0.3, and —0.1, respectively.
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Fig. 11: Zoom-in volume rendering results for the SSR task
under different numbers of initial neurons using the half-
cylinder (320, VM) data set.
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Fig. 12: Volume rendering results for the VS task under
different network depths using the combustion (CHI) data
set. The image resolution is 512.
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Fig. 13: Zoom-in volume rendering results for the TSR task
under different sample sizes using the vortex data set.
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