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Abstract—Recent advances in remote sensing provide a pow-
erful and scalable sensing paradigm to capture abundant visual
information about the urban environments. We refer to such
a sensing paradigm as remote urban sensing. In this paper, we
focus on a migratable satellite image super-resolution problem in
remote urban sensing applications. Our goal is to reconstruct
satellite images of a high resolution in a target area where the
high-resolution training data is not available by transferring
a super-resolution model learned in a source area where such
data is available. This problem is motivated by the limitation
of current solutions that primarily rely on a rich set of high-
resolution satellite images in the studied area that are not always
available. Two important challenges exist in solving our problem:
i) the target and source areas often have very different urban
characteristics that prevent the direct application of a super-
resolution model learned from the source area to the target area;
ii) it is not a trivial task to ensure effective model migration
with desirable quality without sufficient high quality training
data. To address the above challenges, we develop TransRes,
a deep adversarial transfer learning framework, to effectively
reconstruct high-resolution satellite images without requiring any
ground-truth training data from the studied area. We evaluate
the TransRes framework using the real-world satellite imagery
data collected from three different cities in Europe. The results
show that TransRes consistently outperforms the state-of-the-art
baselines by achieving the lowest perception errors under various
application scenarios.

Index Terms—Urban Sensing, Remote Sensing, Migratable
Image Super-Resolution, Transfer Learning

I. INTRODUCTION

In this paper, we develop a principled deep adversarial
transfer learning framework to address the migratable satellite
image super-resolution problem in remote urban sensing ap-
plications. Recent advances in remote sensing (e.g., leveraging
high resolution images from satellites and drones) provide a
powerful and scalable sensing paradigm to capture abundant
visual information (e.g., streets, traffic, land usage, disaster
damage) about the urban environments [1]. We refer to this
sensing paradigm as remote urban sensing. Examples of
remote urban sensing applications include urban land usage
classification [2], city-wide traffic risk detection [3], and real-
time disaster situation awareness [4]. In this paper, we focus on

a migratable satellite image super-resolution problem where
our goal is to generate a reconstructed satellite image of a
high resolution from a low resolution one in an area of interest
where the high-resolution training data is not available.

A good amount of efforts have been made to address the
satellite image super-resolution problem in image processing,
machine learning, and remote sensing [5]–[9]. The current
solutions primarily rely on a rich set of high-resolution satellite
images in the studied area as the training data to learn an effec-
tive super-resolution model [10]. However, such a high-quality
training dataset is not always available to the remote urban
sensing applications due to the high cost of data acquisition
and government/legal regulations [11]. For example, the high-
resolution imagery data collected by DigitalGlobe for the ur-
ban land usage classification applications is often quite expen-
sive (e.g, USD 1,750 per 100 sq.km.) [12]. Furthermore, high-
resolution satellite imagery data collected by some advanced
commercial satellites (e.g., WorldView satellite) is generally
not available for cities outside US due to government regula-
tions [13]. Additionally, open satellite imagery platforms (e.g.,
Google Maps) provide publicly available satellite imagery data
with global coverage. However, the spatial resolution of such
“free data” is usually too low in developing countries to be
useful for many remote urban sensing applications [14]. For
example, the satellite images from Google Maps are reported
to provide insufficient resolutions to detect the harmful algal
blooms that are highly correlated with cholera outbreaks in
major Bangladesh cities [15]. Therefore, the lack of high-
resolution training data presents a fundamental challenge to
the satellite image super-resolution problem in remote urban
sensing applications.

To address the above challenge, this paper develops a deep
adversarial transfer learning solution to reconstruct the high-
resolution satellite images in a target area where the training
data is not available by taking advantage of a super-resolution
model learned in a source area where such data is available.
For example, consider two cities: city A and city B that have
satellite images of different resolutions. In particular, city A
has the high-resolution satellite images published by Google
Maps but city B does not [16]. In this example, our goal is to978-1-7281-6630-8/20/$31.00 2020 c© IEEE
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Figure 1. Example of Discrepancy between Source and Target Area

reconstruct the high-resolution satellite images in city B (i.e.,
target area) by leveraging the super-resolution model learned
in city A (i.e., source area). Such a migratable satellite image
super-resolution problem is non-trivial to solve due to two
technical challenges we elaborated below.

Discrepancy on Area-specific Urban Characteristics: A
simple solution to solve the migratable satellite image super-
resolution problem is to directly apply the super-resolution
model learned from the source area to reconstruct the high-
resolution satellite image in the target area [7], [17]. How-
ever, a major issue of this solution is that the source and
target area may have completely different area-specific urban
characteristics (e.g, color distributions, architectural styles, and
object layouts as shown in images (B) and (D) in Figure 1).
Such a discrepancy would prevent the direct application of
a super-resolution model learned from the source area to the
target area (e.g, the quality of the reconstructed image (C)
from (A) and (B) is not as good as the actual image (D) in
Figure 1). Therefore, the migratable super-resolution model
has to carefully accommodate the discrepancy on area-specific
urban characteristics between the source and target areas to
ensure the desirable quality of the reconstructed images.

Lack of Ground Truth Data in the Target Area: An al-
ternative way to solve the migratable satellite image super-
resolution problem is to carefully modify the super-resolution
model learned from the source area to reconstruct the satellite
image for the target area. However, one important limitation
exists: current transfer learning solutions have established an
effective model migration process from the source to target
area by re-training the super-resolution model of the source
area using a high-resolution training dataset from the target
area [5], [6]. However, such a training dataset is not available
in the unsupervised super-resolution problem we study in this
paper. Therefore, it is not a trivial task to ensure effective
model migration with the desired quality assurance given the
lack of ground-truth training data in the target area.

To address the above challenges, we develop TransRes,
a deep transfer learning framework for migratable satellite
image super-resolution in remote urban sensing applications.
TransRes is an unsupervised super-resolution solution that
does not require any high-resolution training data from the
studied area (i.e., target area). In particular, to address the first

challenge, we transfer the super-resolution model learned from
the source area by accommodating the discrepancy on area-
specific urban characteristics through a deep transfer learning
network design. To address the second challenge, we design a
set of adversarial and cycle-consistent neural network architec-
tures to improve the resolution and quality of the reconstructed
images without requiring the direct matching between the high
and low resolution training data from the same area. To the
best of our knowledge, TransRes is the first deep adversarial
transfer learning approach to address the migratable satel-
lite image super-resolution problem in remote urban sensing
applications. The unsupervised nature of TransRes makes it
applicable to address similar data scarcity problems in many
urban sensing applications (e.g., disaster damage assessment,
traffic risk detection, urban land classification) where the
ground-truth training data is not always available. We evaluate
the TransRes framework using the real-world satellite imagery
data collected from three different cities in Europe. The results
show that TransRes consistently outperforms the state-of-the-
art baselines by achieving the lowest perception errors in
reconstructing high-resolution satellite images in the targe area
under various application scenarios.

II. RELATED WORK

A. Remote Urban Sensing

Motivated by the advent of modern optical and image
processing technologies, remote urban sensing has emerged as
a powerful and scalable sensing paradigm to capture abundant
visual information of the urban environments [1]. Examples
of remote urban sensing applications include urban land
usage classification [2], city-wide traffic risk detection [18],
and real-time disaster situation awareness [19]. A few key
challenges exist in current remote urban sensing applications.
Examples include data scarcity [20], spatial coverage [21],
privacy preservation [22], and image obscurity [23]. However,
the unsupervised migratable image super-resolution problem
remains to be an open and challenging problem in remote
urban sensing applications. In this paper, we develop a novel
TransRes framework to address the problem by designing a
novel deep adversarial transfer learning framework that utilizes
a set of adversarial and cycle-consistent neural network design
to ensure the desired reconstructed image quality.

2020 17th IEEE International Conference on Sensing, Communication and Networking (SECON)

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 18,2022 at 21:41:09 UTC from IEEE Xplore.  Restrictions apply. 



B. Satellite Image Super-Resolution

Efforts have been made to address the satellite image super-
resolution problem in image processing, machine learning, and
remote sensing [5]–[9]. For example, Lin et al. proposed a
domain transfer learning approach for hyper-spectral image
enhancement by utilizing the cross-correlation between the
low-resolution hyper-spectral image and the corresponding
multi-spectral image [5]. Zhang et al. proposed a neural texture
transfer framework to improve the spatial resolution of an
image by leveraging the high-resolution contents learned from
a set of reference images [6]. Tuna et al. presented a deep con-
volutional framework for the single frame satellite image super
resolution problem by leveraging the conventional neural net-
works to refine the reconstructed high-resolution images [7].
Wang et al. proposed a cycle convolutional neural network
framework to generate high-resolution images from the low-
resolution ones using cycle-consistent network design [8].
However, those approaches cannot be directly applied to our
migratable satellite image super-resolution problem because
they primarily rely on a rich set of high-resolution satellite
imagery data from the studied area to build an effective
super-resolution model, which is not available in our problem
setting. In contrast, we develop a deep adversarial transfer
learning approach to output high-resolution satellite images
with desired perception quality in the areas where high-quality
training data is not available.

C. Generative Adversarial Learning

Our work is also related to the generative adversarial learn-
ing technique, which has been applied in many areas such as
nature language processing, recommender systems, intelligent
transportation, and image generation [24]–[27]. For example,
Pascual et al. designed an end-to-end speech enhancement
framework to provide fast raw audio quality improvement via
generative adversarial networks [24]. Kang et al. proposed
a visually-aware fashion recommendation system to provide
personalized cloth recommendations using generative image
models [25]. Zhang et al. developed a traffic risk forecasting
scheme to provide reliable traffic accident rate prediction
using an adversarial transfer learning network [26]. Ledig et
al. proposed a generative adversarial network framework to
generate high-quality natural sense images with an augmented
resolution by utilizing an image generator and image discrim-
inator network design [27]. To the best of our knowledge, the
TransRes is the first adversarial transfer learning approach to
solve the migratable image super-resolution in remote urban
sensing by addressing challenges of the discrepancy on area-
specific urban characteristics between the source and target
area and the lack of ground truth data in the target area.

III. PROBLEM DESCRIPTION

In this section, we formally define the migratable satellite
image super-resolution problem in remote urban sensing. We
first define the key terms used in the problem statement.

Definition 1: Source Area (S): We define a source area to
be an area where the high-resolution satellite imagery data is
available.

Definition 2: Target Area (T ): We define a target area to be
the studied area of interest where the high-resolution satellite
imagery data is not available.

Definition 3: Sensing Cell: Following a similar procedure
in [28], we first divide the source and target area into disjoint
sensing cells. Each cell represents a subarea of interest. In
particular, we define M to be the number of sensing cells in
the source area and m to be the mth sensing cell, and N to
be the number of sensing cells in the target area and n to be
the nth sensing cell.

Definition 4: High-Resolution Image in Source Area
(SH ): We define SH to be a set of high-resolution satellite
images that are collected from the source area with a relatively
high resolution. In particular, we define SH

m to be the high-
resolution image of the sensing cell m in the source area.

Definition 5: Low-Resolution Image in Target Area (TL):
we define TL to be a set of the satellite images that are
collected from the target area with a relatively low resolution.
In particular, we define TL

n to represent the low-resolution
image of the sensing cell n in the target area.

Definition 6: Reconstructed High-Resolution Image in
Target Area (T̂H ): We define T̂H to be the set of recon-
structed high-resolution satellite images in target area. The
reconstructed high-resolution satellite images are expected
to have the same resolution as the high-resolution satellite
images in the source area. In particular, we define T̂H

n as the
reconstructed high-resolution satellite image for the sensing
cell n in the target area.

Definition 7: Area-specific Urban Characteristics: it refers
to the specific visual features (e.g, color distributions, archi-
tectural styles, and object layouts) of the satellite images that
are characteristic in a given area. In particular, the source
and target area often have very different area-specific urban
characteristics as shown in Figure 1.

Definition 8: Perception Quality: To evaluate the quality
of T̂H , we use the state-of-the-art perception metric [29] to
quantify the perception difference between the actual and
reconstructed satellite images as follows:

perc(TH
n , T̂H

n ) = Ω
(
D(TH

n )−D(T̂H
n )
)

(1)

where perc(·) represents the perception metric. D(TH
n ) and

D(T̂H
n ) represent the extracted deep features from the actual

and reconstructed satellite images using ImageNet-trained
deep convolutional neural networks (e.g., VGG [30]). Ω(·) is a
function to calculate the difference between two deep feature
vectors (e.g., Mean Squared Error (MSE), Mean Absolute
Error (MAE)). This metric has been proven to be robust in
capturing perception quality of images [31].

The goal of our migratable super-resolution problem is to
accurately reconstruct the high-resolution satellite image for
each sensing cell in the target area from its corresponding low-
resolution satellite image by leveraging the super-resolution
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model learned from the source area. Using the definitions
above, our problem is formally defined as:

arg min
T̂H
n

(
Ω
(
D(TH

n )−D(T̂H
n )
)
| SH , TL

)
, ∀1 ≤ n ≤ N

(2)
This problem is challenging considering the discrepancy on
area-specific urban characteristics between the source and
target areas and the lack of ground truth data in the target
area. In this paper, we develop a TransRes scheme to address
these challenges, which is elaborated in the next section.

IV. SOLUTION

A. Overview of TransRes Framework

TransRes is a deep adversarial transfer learning approach to
address the migratable image super-resolution problem in re-
mote urban sensing. The overview of the TransRes framework
is shown in Figure 2. It consists of two modules: 1) migratable
image super-resolution networks (MISN) and 2) perception
quality-aware optimization process (PQOP). First, in the
MISN module, we present the adversarial transfer learning
network design in TransRes that enables the effective super-
resolution model migration between the source and target
areas to accommodate the discrepancy on area-specific urban
characteristics. Second, in the PQOP module, we present the
optimization process of TransRes to learn the optimal instances
of all neural networks in the MISN module to achieve the
desired perception quality of the reconstructed satellite images.

Figure 2. Overview of TransRes framework

B. Migratable Image Super-Resolution Networks (MISN)

In this subsection, we present the adversarial transfer
learning network architecture design in MISN. An overall
architecture of the adversarial transfer learning network is
shown in Figure 3. The adversarial transfer learning network
design consists of three neural network architectures: an up-
scaling network (UN), a downscaling network (DN), and an
examination network (EN). The upscaling and downscaling
networks work collaboratively to learn a migratable super-
resolution model without requiring any ground-truth data for
the target area. In particular, the upscaling network first
generates the reconstructed images in the target area with

the same resolution as the high-resolution ones in the source
area. The downscaling network then converts the reconstructed
images back to the low-resolution ones in the target area and
compared with the their original low-resolution counterparts.
The goal of such a design is to verify if the area-specific urban
characteristics of the target area can be successfully preserved
during the image reconstruction process. The examination
network is used to exam the reconstructed high-resolution
satellite image to ensure the desired image quality. Intuitively,
the examination network is used to regulate the upscaling
network to ensure the reconstructed images generated by the
upscaling network have the same resolution and image quality
as the high-resolution images in the source area. We first
formally define the three network architectures as follows.

Figure 3. Overall of Network Architectures

Definition 9: Upscaling Network (UN): we define UN as a
generative network that reconstructs a high-resolution satellite
image X̂H from a corresponding low-resolution satellite image
XL as follows:

X̂H = UN(XL) (3)

An example of the upscaling network is shown in (A) of Fig-
ure 4. It consists of three components: an image encoder, a set
of residual blocks, and an image decoder. The image encoder
contains a set of convolutional and instance normalization
layers, which are used to extract the semantic feature represen-
tations of the contents in low-resolution images. The residual
block component contains multiple residual blocks [32] that
handle the complex task of segmenting individual objects of
an image and applying augmented contents (e.g., more fine-
grained object details) to each identified object to improve
the image resolution. The image decoder has multiple de-
convolutional and instance normalization layers to convert
the augmented semantic feature representations generated by
the residual block component into the reconstructed high-
resolution satellite images.

Definition 10: Downscaling Network (DN): we define
DN as an additional generative network that transforms the
reconstructed high-resolution satellite image X̂H back to its
original low-resolution satellite image XL as follows:

XL = DN(X̂H) (4)

An example of the downscaling network is shown in (B) of
Figure 4. Similar to the upscaling network, the downscaling
network also consists of three components: an image encoder,
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Figure 4. Illustrations of Network Architectures

a set of residual blocks, and an image decoder. The only
difference here is that the residual blocks in the downscaling
network are used to remove the fine-grained object details in
reconstructed images to reduce the resolution.

Definition 11: Examination Network (EN): We define EN
as an examination network to exam whether a high-resolution
satellite image XH matches the same image quality (i.e., fine-
graininess and image clarity) of a reference high-resolution
satellite image Y H or not:

EN :

{
1 : XH ∈ Y H

0 : XH /∈ Y H (5)

where EN returns true (i.e., “1”) if XH matches the same
image quality of the reference satellite image Y H and false
(i.e., “0”) otherwise.

An example of the examination network is shown in (C) of
Figure 4. It consists of two components: a feature extractor
and an output layer. The feature extractor contains a set of
convolutional layers, which are used to identify a critical
set of visual features that best represent the content of a
reconstructed satellite image. The output layer includes a
convolutional layer and an average pooling layer, which are
used to evaluate the reconstructed image quality and output
the classification results using the extracted visual features
generated by the feature extractor.

C. Perception Quality-aware Optimization Process (PQOP)

Given the three network architectures above, our next ques-
tion is how to learn the optimal instances of all networks to
maximize the quality of the reconstructed satellite image in the
target area. To that end, we define three sets of loss functions
in our TransRes framework, which are elaborated below.

In the first set of loss functions, we consider the stability
loss, which is used to ensure the stable performance of the
upscaling network UN using the high resolution satellite
images collected from the source area SH as follows:

LST
UN :

(
Lperc(S

H ,UN(SL)) + Lpix(SH ,UN(SL))
)

(6)

where LST
UN represents the stability loss function for the up-

scaling network UN . SL indicates the low-resolution image

in source area, which is generated from SH through the bi-
cubic down-sampling operation [33]. Lperc(·) is the perception
loss [29] to quantify the perceptual difference between the
actual and reconstructed images (i.e., XH and X̂H ). Lpix(·)
is the MSE loss [34] to measure the pixel-wise RGB value
difference between the actual and reconstructed images. Intu-
itively, LST

UN is designed to ensure the stable performance of
UN . Similarly, we have the stability loss function LST

DN for
the downscaling network DN as follows:

LST
DN :

(
Lperc(T

L,DN(TH)) + Lpix(TL,DN(TH))
)

(7)

where TH is the high-resolution image for the target area,
which is generated from TL through the bi-cubic up-sampling
operation [33]. Intuitively, LST

DN is designed to ensure the stable
performance of DN .

After defining the loss functions for the upscaling and
downscaling networks, our next question is: how to ensure the
two networks work collaboratively to maximize the quality of
the reconstructed satellite images in the target area. To address
this question, we define another set of transformation loss
function as follows:

LTR
UN,DN : Lpix(TL,DN(UN(TL))) + Lpix(SH ,UN(DN(SH)))

(8)

where LTR
UN,DN represents the transformation loss for the UN

and DN . The idea is to ensure the upscaling and downscaling
networks can translate the satellite images TL and SH to the
original versions after the image upscaling and downscaling
process (i.e., DN(UN(TL))→ TL and UN(DN(SH))→ SH ).
In particular, the reconstructed images (i.e., UN(TL)) are
translated back to the previous resolution and compared with
the original images (i.e., compare DN(UN(TL)) with TL) to
ensure the area-specific urban characteristics of the target area
are preserved in the reconstructed satellite images.

Finally, we consider the adversarial loss for the examination
network EN to exam the quality of reconstructed high-
resolution satellite images generated by the upscaling network
UN . In particular, we define the adversarial loss for the
examination network EN as follows:

LAD
EN :

(
||0− EN(T̂H)||2 + ||1− EN(SH)||2

)
(9)

where LAD
EN is the adversarial loss function for the examination

network EN . || · ||2 donates the L2-norm of a given matrix.
Intuitively, the examination network EN is used to identify
the poorly reconstructed high-resolution satellite images T̂H

that do not match the same level of image quality as the actual
high-resolution satellite images in the source area. Similarly,
we also define the adversarial loss for the upscaling network
UN as follows:

LAD
UN :

(
||1− EN(T̂H)||2

)
(10)

LAD
UN is used to ensure that UN can generate reconstructed

satellite image T̂H with desired image quality verified by EN
(i.e., returning 1). Intuitively, LAD

UN and LAD
EN are designed to

2020 17th IEEE International Conference on Sensing, Communication and Networking (SECON)

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 18,2022 at 21:41:09 UTC from IEEE Xplore.  Restrictions apply. 



enforce the competition between UN and EN so that UN can
generate high quality reconstructed high-resolution satellite
images with the highest image quality possible.

Finally, we combine the above three set of loss functions
to derive the final loss LUN,DN for the generative networks
(i.e, UN and DN ) and the final loss LEN for the examination
network (i.e., EN ) to jointly optimize the objectives of our
adversarial transfer learning networks (i.e., loss functions
defined above) as follows:

LUN,DN :
(
LST

UN + LST
DN + LTR

UN,DN + LAD
UN

)
LEN : LAD

EN
(11)

Given the above loss functions, the optimal instances (i.e.,
UN∗, DN∗, and EN∗) of all networks can be learned using
the Adaptive Moment Estimation (ADAM) optimizer [35]. We
then use UN∗ to generate the reconstructed satellite images
for the target area T̂H as the output of TransRes as follows:

T̂H = UN∗(TL) (12)

V. EVALUATION

In this section, we conduct extensive experiments on real-
world datasets to answer the following questions:
• Q1: Can TransRes achieve a better reconstructed satel-

lite image quality than the state-of-the-art baselines for
different areas in a city with distinct area-specific urban
characteristics?

• Q2: Can TransRes consistently outperform other base-
lines in more challenging application scenarios when
the source and target area come of different cities with
completely different urban environments?

• Q3: How do the different choices of model parameters
(e.g., the depth and width of neural networks) affect the
performance of TransRes?

A. Dataset

In our experiment, we collect real-world satellite imagery
datasets from three different cities in Europe (i.e, Barcelona
(Spain), Athens (Greece), and Berlin (Germany)) with two
land usage classes (i.e., urban fabric and transportation as
shown in Figure 5). The two different land usage classes
in different cities have clearly different area-specific urban
characteristics, which create a challenging evaluation scenario
for the migratable super-resolution problem we studied in this
paper. We summarize the datasets as follows.

Urban Imagery Dataset from Google Maps: We collect
the urban imagery datasets from Barcelona, Athens, and Berlin
using Google Map Platform 1. In our evaluation, each collected
satellite image is in 224×224 resolution with a 250m×250m
ground coverage, which is considered as the high resolution
image in our evaluation. We adopt the widely-used bicubic
interpretation tool implemented in scikit-image package 2 to

1https://developers.google.com/maps/documentation/
2https://scikit-image.org/docs/dev/api/skimage.transform.html\#skimage.

transform.resize

Figure 5. Examples of Two Classes of Urban Images from Three Different
Cities in Europe

reduce the resolution of a collected satellite image by 4 times
as the low resolution image in our experiment (i.e., each low-
resolution satellite image is in 112×112 resolution as shown
in Figure 1). Finally, we randomly select 600 high and low
resolution images (i.e., 300 from each category) from the
studied area for our experiments.

B. Baselines
We compare TransRes with the state-of-the-art conventional

and deep learning baselines. To ensure the fairness of com-
parison, the inputs to all compared schemes are set to be the
same (i.e., the low-resolution images from the target area and
the high-resolution images from the source area).

1) Conventional Models
• Nearest-neighbour (NN) [36]: it is a conventional

super-resolution scheme that augments the satellite
image contents by utilizing the RGB value from the
nearest available neighboring pixels.

• Bilinear [37]: it is a super-resolution scheme that
utilizes bilinear upsampling operations to upscale
the image resolution.

• Bicubic [38]: it is a popular super-resolution scheme
that leverages the bicubic interpolation technique to
estimate the RGB values of all empty pixels in the
reconstructed high-resolution satellite images.

2) Deep Learning Models
• SFSR18 [7]: it utilizes a set of deep convolutional

operations to scale the low-resolution satellite image
to a high-resolution one and refine the reconstructed
high-resolution satellite images.

• SRGAN17 [27]: it leverages a generative adversar-
ial network design that utilizes an image generator
and an image discriminator to improve the quality
of reconstructed high-resolution satellite images.

• CycleCNN19 [8]: it is a deep transfer learning
framework that utilizes the cycle-consistent design
to capture the complex association of fine-grained
object details with the low-resolution objects in the
image reconstruction process.
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Table I
PERFORMANCE COMPARISONS (Same CITY Different CLASSES)

Barcelona U→Barcelona T Barcelona T→Barcelona U

Deep Feature 1 Deep Feature 2 Deep Feature 1 Deep Feature 2

Class Algorithm MAE MSE MAE MSE MAE MSE MAE MSE

Nearest-neighbor 0.5179 1.6749 0.4043 1.1325 0.6420 2.4936 0.4949 1.6365

Conventional Bilinear 0.5092 1.6544 0.3948 1.1117 0.6168 2.3764 0.4712 1.5237

Bicubic 0.4929 1.5539 0.3809 1.0359 0.5993 2.2503 0.4559 1.4282

SFSR18 0.4966 1.5539 0.3816 1.0346 0.6001 2.2342 0.4517 1.4023

Deep Learning SRGAN17 0.4893 1.5129 0.3752 0.9935 0.5919 2.1930 0.4443 1.3681

CycleCNN19 0.5658 1.9136 0.4369 1.2966 0.5661 2.0206 0.4375 1.2837

Our Model TransRes 0.4611 1.3426 0.3532 0.8949 0.5416 1.8659 0.4185 1.1819

C. Evaluation Metrics

To ensure the rigorous evaluation of the performance for all
compared schemes, we use the perceptual metric (Definition 8)
in our experiments, which has been proven to be a metric
that is close to human perception in the recent computer
vision studies [29], [31], [39]. In particular, following the
literature in [29], [31], we select two commonly used deep
features (i.e., D(·) in Equation (1)) extracted by the 2nd,
3rd convolutional layers of the 4th convolutional block in
VGG model (namely, V GG4−2, V GG4−3.) We refer to them
as deep feature 1 and deep feature 2 in the evaluation. In
addition, we adopt two commonly used error measurement
functions (i.e., Mean Absolute Error (MAE) and Mean Squared
Error (MSE) as the Ω(·) in Equation (1)) to calculate the
difference between the deep features extracted from the actual
and reconstructed satellite images. Intuitively, a lower value
in the error metric represents a higher perception quality of
the reconstructed satellite images, and hence a better super-
resolution performance.

D. Evaluation Results

1) Q1: Performance Comparison across Different Land
Classes in a City: In the first set of experiments, we evaluate
the performance of all compared schemes by setting the source
and target area to locations of different land usage classes
in the same city. For example, we consider two land usage
classes in Barcelona (i.e., urban fabric and transportation,
which are referred to as Barcelona U and Barcelona T,
respectively). We set locations of one class to be the source
area and the locations of the other class to be the target
area. For example, Barcelona U→Barcelona T represents that
we set the locations of the urban fabric class in Barcelona
(Barcelona U) as the source area and the locations of the
transportation class in Barcelona (Barcelona T) as the target
area). The evaluation results are presented in Table I. We
observe that the TransRes scheme consistently outperforms all
compared baselines. For example, the performance gains of
TransRes over the best-performing baseline (i.e., SRGAN17)
in Barcelona U→ Barcelona T with the deep feature 1 (i.e.,
deep feature extracted by V GG4−2) on MAE and MSE are
6.12% and 12.68%, respectively. Such performance gains

mainly come from the fact that TransRes reconstructs the high-
quality images for the target area by transferring the super-
resolution model learned from the source area. In particular,
the adversarial transfer learning network design in Tran-
sRes enables the effective super-resolution model migration
between the source and target areas to accommodate the
discrepancy on the area-specific urban characteristics between
the two areas.

2) Q2: Performance Comparison across Different Cities: In
this experiment, we evaluate the performance of all compared
schemes in a more challenging evaluation scenario when the
source and target areas are from different cities. In particular,
we consider two evaluation settings: 1) source and target areas
are from two cities with the same land usage class (we refer
to it as different cities same class) and 2) source and target
areas are from two cities with different land usage classes (we
refer to it as different cities different classes). The evaluation
results are shown in Table II and Table III. We observe that
TransRes consistently outperforms all baselines over different
source and target area settings. For example, the performance
gains achieved by TransRes compared to the best-performing
baseline (i.e., CycleCNN19) in Barcelona U→Athens U with
the deep feature 2 (i.e., deep feature extracted by V GG4−3)
on MAE and MSE are 5.11% and 10.02%, respectively.
Such consistent performance gains over various scenarios
demonstrate the effectiveness of the adversarial and transfer-
consistent neural network design in our model.

3) Q3: Robustness Study of TransRes Scheme: Two key
parameters in the upscaling network (Definition 9) and down-
scaling network (Definition 10) are essential for our TransRes
framework: 1) the number of residual blocks (N ) that are
used to control the depth of our networks, and 2) the channel
transformation ratio (C) that is used to control the width of
our networks. In this set of experiments, we examine how
these two parameters affect the performance of our TransRes.
Results are presented in Figure 6. Given the space limit, we
only present the MAE results for three source and target area
pairs (e.g,. Barcelona U→Barcelona T category in Table I).
Performance in other scenarios are similar. We observe that the
performance of TransRes is relatively stable as the number
of residual blocks and channel transformation ratio change,
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Table II
PERFORMANCE COMPARISONS (Different CITIES Same CLASS)

Barcelona U→Athens U Barcelona T→Athens T

Deep Feature 1 Deep Feature 2 Deep Feature 1 Deep Feature 2

Class Algorithm MAE MSE MAE MSE MAE MSE MAE MSE

Nearest-neighbor 0.6556 2.5838 0.5041 1.7083 0.5359 1.8301 0.4187 1.2036

Conventional Bilinear 0.6550 2.6670 0.5003 1.6967 0.5187 1.7554 0.4015 1.1408

Bicubic 0.6346 2.5162 0.4843 1.5945 0.5036 1.6582 0.3884 1.0685

SFSR18 0.6247 2.3912 0.4739 1.5294 0.5001 1.6206 0.3822 1.0358

Deep Learning SRGAN17 0.6199 2.3803 0.4714 1.5154 0.5094 1.6990 0.3927 1.0952

CycleCNN19 0.5550 2.0250 0.4261 1.2541 0.5052 1.6929 0.3919 1.0746

Our Model TransRes 0.5307 1.8511 0.4054 1.1398 0.4912 1.5999 0.3809 1.0208

Table III
PERFORMANCE COMPARISONS (Different CITIES Different CLASSES)

Barcelona U→Berlin T Barcelona T→Berlin U

Deep Feature 1 Deep Feature 2 Deep Feature 1 Deep Feature 2

Class Algorithm MAE MSE MAE MSE MAE MSE MAE MSE

Nearest-neighbor 0.5006 1.5740 0.3884 1.0756 0.6919 2.9329 0.5354 1.9279

Conventional Bilinear 0.5141 1.6866 0.3967 1.1393 0.6833 2.9462 0.5244 1.8841

Bicubic 0.4993 1.5949 0.3841 1.0714 0.6660 2.8021 0.5096 1.7786

SFSR18 0.4984 1.5649 0.3824 1.0528 0.6572 2.7022 0.5030 1.7312

Deep Learning SRGAN17 0.4984 1.5822 0.3824 1.0528 0.6808 2.9452 0.5200 1.8714

CycleCNN19 0.5022 1.3985 0.3782 0.8727 0.6855 3.0137 0.5285 1.9442

Our Model TransRes 0.3481 0.7187 0.2629 0.4688 0.6482 2.6819 0.4976 1.7145

demonstrating the robustness of our scheme over these key
parameters of our model.

VI. CONCLUSION

This paper develops a TransRes framework to solve the
migratable image super-resolution problem in remote urban
sensing. In particular, we develop a novel deep adversarial
transfer learning framework to effectively reconstruct high-
resolution satellite images without requiring any ground-truth
training data from the studied area. The evaluation results
demonstrate that TransRes achieves non-trivial performance
gains compared to the state-of-the-art super-resolution base-
lines in reconstructing high-resolution satellite images with
the desirable quality. We believe TransRes will provide useful
insights to address similar data scarcity problems in other
urban sensing applications.
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