
Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning
Pengfei Gu* Jun Han† Danny Z. Chen‡ Chaoli Wang§

University of Notre Dame

ABSTRACT

We introduce Scalar2Vec, a new deep learning solution that trans-
lates scalar fields to velocity vector fields for scientific visualization.
Given multivariate or ensemble scalar field volumes and their veloc-
ity vector field counterparts, Scalar2Vec first identifies suitable vari-
ables for scalar-to-vector translation. It then leverages a k-complete
bipartite translation network (kCBT-Net) to complete the translation
task. kCBT-Net takes a set of sampled scalar volumes of the same
variable as input, extracts their multi-scale information, and learns to
synthesize the corresponding vector volumes. Ground-truth vector
fields and their derived quantities are utilized for loss computation
and network training. After training, Scalar2Vec can infer unseen
velocity vector fields of the same data set directly from their scalar
field counterparts. We demonstrate the effectiveness of Scalar2Vec
with quantitative and qualitative results on multiple data sets and
compare it with three other state-of-the-art deep learning methods.

Index Terms: Scalar field, vector field, scalar-to-vector translation,
deep learning.

1 INTRODUCTION

To study various scientific phenomena, domain scientists often gen-
erate time-varying multivariate or ensemble volumetric data from
simulations. These data can span thousands of time steps and include
dozens of variables. Due to limited disk storage and I/O bandwidth,
scientists could only afford to store simulation output sparsely (e.g.,
a fraction of scalar and vector fields) for post hoc analysis and vi-
sualization. Inspired by image colorization works (i.e., translating
grayscale images to color images), we investigate the problem of
scalar-to-vector (Scalar2Vec) translation, i.e., recovering velocity
vector fields from their scalar field counterparts. That is, given a set
of scalar volumes, we aim to translate them to the corresponding
vector volumes in high quality via a deep learning approach.

Studying the Scalar2Vec problem is meaningful due to the follow-
ing reasons. First, images are different from volumes, and grayscale
vs. color images is not the same as scalar vs. vector fields. Therefore,
Scalar2Vec itself is worth exploring, even with the success of many
image colorization solutions. Second, with the trained Scalar2Vec
network for a certain simulation, we could only store scalar field
data of the same simulation and use them to recover their vector field
counterparts during postprocessing. We will show that integrated
with data compression, Scalar2Vec is superior to direct compression
of vector fields, both qualitatively and quantitatively. This has direct
implications for scientific workflow and data management, which
is highly relevant to scientific simulation and visualization. Third,
given multivariate or ensemble data, it remains unknown which
scalar variable could be used in Scalar2Vec translation. Using the
derived velocity magnitude (VM) scalar fields seems an obvious

*e-mail: pgu@nd.edu
†e-mail: jhan5@nd.edu
‡e-mail: dchen@nd.edu
§e-mail: chaoli.wang@nd.edu

choice for velocity vector fields. Still, we want to design a solution
that chooses different variables suitable for Scalar2Vec translation
based on the similarity between VM and other variables. Note that
these chosen variables are alternatives to VM, as the translation is
still one-to-one (i.e., from one scalar field to the vector field). Such
a solution could bring new insights for scientists to understand the
complex relationship between scalar and vector fields.

Achieving Scalar2Vec translation poses several unique challenges.
First, Scalar2Vec translation is a more challenging task than scalar-
to-scalar translation (e.g., V2V [23]) because more information
(i.e., scalars vs. vectors) and more complex patterns (e.g., swirls
and spirals) need to be synthesized. This requires us to design a
more powerful model for learning the relationship between scalar
and vector fields. Second, investigating scalar fields of different
variables other than VM for successful Scalar2Vec translation is
critical to generalize this approach, while image colorization does
not have such an issue. Third, multi-scale information, for example,
features of different sizes or granularities, must be considered in
Scalar2Vec translation, as scalar fields of different variables can vary
considerably. Otherwise, the solution could lead to inferior quality
because it may miss learning finer details across scales. Furthermore,
achieving good translation using different scalar fields under the
same network presents additional challenges, as various scalar fields
could exhibit dramatically different multivariate patterns.

To address these challenges, we present Scalar2Vec, a new deep
learning solution that translates scalar fields to velocity vector fields
for scientific visualization. Scalar2Vec consists of two steps: vari-
able selection and field translation. We assume that ground-truth
(GT) vector fields are available during training. At the variable
selection step, we utilize U-Net [44] to learn variable features in the
latent space and apply t-SNE [38] to project the latent features into a
2D space. We then select the variables close to VM in the projection
space as candidates for one-to-one translation. We hypothesize that
it is most suitable to use VM for the translation task, and the experi-
mental results confirm this hypothesis. At the field translation step,
we propose a k-complete bipartite translation network (kCBT-Net)
to translate the scalar fields to the corresponding velocity vector
fields in high quality. The input to kCBT-Net is the sampled scalar
fields of the same variable. We minimize the errors between the
reconstructed vector fields and GT vector fields using a combination
of magnitude, angle, and Jacobian losses. Once trained, Scalar2Vec
can infer unseen velocity vector fields of the same data set directly
from their scalar field counterparts. To demonstrate the effectiveness
of Scalar2Vec, we provide quantitative and qualitative results on
multiple data sets. We compare Scalar2Vec with three other state-of-
the-art deep learning methods: Pix2Pix [31], CycleGAN [58], and
V2V [23]. The experiments indicate that Scalar2Vec achieves better
quantitative results in two metrics at the data level and one metric
at the representation (i.e., streamline) level. Qualitative results also
confirm the better visual quality of the streamlines traced from the
recovered velocity vector fields using Scalar2Vec.

Our contributions are as follows. First, Scalar2Vec is the first at-
tempt in scientific visualization that translates scalar fields to vector
fields. Second, we propose a new network architecture (i.e., kCBT-
Net) for Scalar2Vec, different from popular image colorization ar-
chitectures. Third, we show the better performance of Scalar2Vec
against Pix2Pix, CycleGAN, and V2V.



2 RELATED WORK

Deep learning for scientific visualization. Researchers have tack-
led various scientific visualization tasks via deep learning ap-
proaches. For volume visualization, examples are super-resolution
generation (single-volume super-resolution [57], temporal and spa-
tial super-resolution [17,18], and simultaneous spatiotemporal super-
resolution [22]), volume completion [21], feature learning of vol-
umes [7] and isosurfaces [19], rendering image synthesis (volume
rendering [3, 26, 27] and isosurface rendering [51]), viewpoint qual-
ity estimation [46], and variable to variable translation [23]. For flow
visualization, examples are super-resolution generation [2,14,20,53],
vector field reconstruction from field lines (for steady [16] and un-
steady [12] flows), access pattern learning [28], feature learning of
lines [15] and surfaces [15, 19], reference frame extraction [33], and
neural flow map interpolation [32]. Unlike the above works, we
focus on translating scalar fields to velocity vector fields, which has
not been attempted in scientific visualization. Our work is similar
to V2V [23] but differs in task goal and network architecture. More
importantly, our kCBT-Net is more powerful than the V2V architec-
ture in capturing multi-scale information. In fact, the generator of
V2V can be considered as a special case of our kCBT-Net.

Image-to-image translation. Researchers have achieved impres-
sive success on image-to-image (I2I) translation with deep learning
techniques. Isola et al. [31] introduced Pix2Pix, the first unified
framework based on conditional GAN (cGAN) [39] for paired I2I
translation. Xian et al. [52] developed TextureGAN with a local
texture loss for addressing the sketch-to-image problem with texture
patches. Gonzalez et al. [11] adopted disentanglement representa-
tion to improve the performance of I2I translation. Tang et al. [49]
utilized the extra semantic information for cross-view image transla-
tion. The above works require paired images as input. To eliminate
the dependence on paired data, Zhu et al. [58] introduced CycleGAN
that uses a cycle consistency loss for unpaired I2I translation. Liu et
al. [36] presented an unsupervised I2I translation framework follow-
ing Coupled GANs with a shared-latent space assumption. Huang et
al. [29] extended the work of Liu et al. [36] for handing multi-modal
I2I translation. Park et al. [40] proposed a swapping autoencoder to
encode the input image into two independent components and swap
them to generate diverse outputs.

For image colorization, Cheng et al. [8] leveraged a five-layer
CNN for image colorization. Zhang et al. [55] utilized CNN to
colorize grayscale images. Their model consists of eight blocks, and
each block has two or three stacked convolutional layers. Iizuka et
al. [30] proposed a multi-path CNN to colorize the grayscale images.
The presented multi-path network has two branches. Each branch is
divided into four subnets to learn features at multiple paths. Zhang et
al. [56] developed a user-guided image colorization solution. Their
approach consists of two networks: local hint and global hint net-
works. Both networks are based on U-Net. He et al. [25] introduced
exemplar-based local colorization via deep learning, transferring
the colors from a given reference image to the grayscale one. Their
method includes two sub-networks: similarity and colorization sub-
networks, based on VGG19 [47] and U-Net, respectively. Ci et
al. [9] presented an interactive deep cGAN for scribble-based anime
line art colorization in an end-to-end style. The discriminator uses a
pre-trained network called Illustration2Vec [45], and the generator
adopts the U-Net architecture. Xu et al. [54] achieved fast deep
exemplar colorization using a stylization-based architecture. The
architecture encompasses transfer and colorization sub-networks,
following the encoder-decoder and U-Net structures, respectively.
Su et al. [48] proposed an instance-aware image colorization method
which includes three components: an object detector for object
instance detection, two instance colorization networks for feature
extractions at the object- and image-levels, and a fusion module for
feature blending and final color prediction.

Translating scalar fields to vector fields is a more difficult task.

Grayscale and color images share the same visual content while only
preserving different color channels. Vector fields exhibit dynamic
flow patterns (e.g., swirling, twisting patterns, etc.), which may
not present in scalar fields with distinct contents. Thus, the neural
network needs to learn how to synthesize flow patterns from scalar
fields and remove structures not presented in vector fields.

U-Net t-SNE

QVAPORQSNOW

QRAINQICE

PRECIPP

CLOUDVM

available

variables

kCBT-Net

QVAPOR

candidate

variables

VMP

variable

selection

field

translation

QVAPOR

scalar

field

vector

field

Figure 1: Overview of Scalar2Vec using the hurricane data set where
three of the eight variables are chosen as candidate variables for the
scalar-to-vector translation task.

3 SCALAR2VEC

As shown in Figure 1, we design Scalar2Vec for accomplishing the
translation task in two steps: variable selection and field translation.
For variable selection, similar to V2V [23], we identify suitable
variables for Scalar2Vec translation. For field translation, we propose
the kCBT-Net to complete the translation task in high quality given
the chosen variables. Scalar2Vec randomly picks volume samples
based on a certain percentage threshold to select variables and train
the network. Once trained, given an unseen scalar field not used in
training, Scalar2Vec can infer its corresponding vector field.
3.1 Variable Selection
At the variable selection step, following V2V [23], we leverage
U-Net [44] as the feature extractor to implicitly learn the features
from all variables (including VM) of the given multivariate or en-
semble volumetric data. In particular, the randomly sampled time
steps of all variables of the given multivariate or ensemble volumet-
ric data are input to U-Net to output the features per variable per
time step. VM scalar fields are derived from their corresponding
velocity vector fields. Each randomly picked volume sample of each
variable is mapped to a latent feature. Then, we utilize t-SNE [38]
to project all these latent features into a 2D space. As shown in
Figure 1, in the projection space, each feature is mapped to a 2D
point. Based on the proximity between the point set from one vari-
able and the point set from the VM variable, we select variables
that behave similarly to VM as the candidate variables. Note that
the translation task is one-to-one, not many-to-one. So we choose
individual candidate variables, not a subset of variables. For the
example shown in Figure 1, we can observe that P and QVAPOR
are the best candidates besides VM, PRECIP and QRAIN are the
worst, while CLOUD, QICE, QSNOW are in the middle. After
that, the sampled scalar fields of the selected variables are input
to kCBT-Net to learn the actual Scalar2Vec translation. Note that
if no other suitable variables besides VM exist, we only consider
translating the scalar fields of VM to the corresponding vector fields
for achieving high-quality reconstruction. Of course, one can pick
arbitrary variables for Scalar2Vec translation (i.e., without variable
selection stage), but this does not guarantee high-quality translation.



Input

Conv, ReLU

Conv, ReLU, RB, RB, RB, DeConv, ReLU

Conv

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

 TB

Conv, ReLU  TB

Conv, ReLU  TB

data flow skip connection max pooling (by 2)

Input

Conv, ReLU, RB, RB, RB, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU Conv, ReLU, RB, RB, RB, DeConv, ReLU

ConvConv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Output

CBT-Net-2

CBT-Net-1

Conv, ReLU  TB

Conv, ReLU  TB

Conv, ReLU  TB

Conv, ReLU  TB

Conv, ReLU  TB

Conv, ReLU  TB

(a) (b)

Figure 2: Network architecture of (a) CBT-Net and (b) kCBT-Net with k = 2. The red dashed line delineates the module connection between
CBT-Net-2 and CBT-Net-1.

3.2 Field Translation

At the field translation step, we approximate a translating function
that perceives and explores multi-scale information. We employ
three additions to ensure the high-quality Scalar2Vec translation.
First, we add residual blocks (RBs) [24] between the encoding
and decoding paths to alleviate the issue of vanishing gradients.
Specifically, in one path, the input is convoluted through several
convolutional (Conv) layers without changing its dimensions. In
another path, the input is passed through an identity mapping. In
the end, the outputs from the two paths are combined by summation.
Second, we utilize a generalized complete bipartite connections
(CBC) structure [5, 13] to consolidate feature hierarchies across
scales via skip connection [44] for assimilating multi-scale infor-
mation. Third, we include multiple fully convolutional network
(FCN) [37] sub-modules to work on different scales of the input data
systematically. This FCN sub-module design can further extract
multi-scale information from different paths working on different
scales’ input.

CBT-Net. A common way to extract and reuse multi-scale infor-
mation is to leverage skip connections. For example, U-Net [44] and
its variants introduced skip connections to fuse the multi-scale fea-
tures extracted from the encoder to the counterparts of the decoder.
However, such skip connections may not guarantee full exploitation
and reuse of multi-scale information.

To fully achieve the multi-scale information learning, we deploy
the CBT-Net to connect between different scales (i.e., different reso-
lutions of the feature maps) in the encoding path and different scales
in the decoding path. As illustrated in Figure 2 (a), CBT-Net con-
sists of three paths: encoding path, bridge path, and decoding path.
There are four Conv layers in the encoding path. Each Conv layer
has a stride of 2 to reduce the dimension by half. In the bridge path,
we use three RBs to assist the gradient flow between the encoding
and decoding paths. The decoding path has four deconvolutional
(DeConv) layers followed by a Conv layer. The DeConv layers are
used to upscale the dimension of the features by two. In the CBC
structure, a skip connection with transformation block (TB) from
each scale of encoding path is concatenated to the scale s (s = 1,2,3)
in decoding path. We utilize TBs to translate the features from the
encoding path to the decoding path. A TB consists of two paths: one
path with three Conv layers, and the other with one Conv layer. The
two paths are finally combined with addition. To concatenate feature
maps extracted from different scales, we use trilinear interpolation
for upsampling and apply max pooling for downsampling. This de-
sign encourages explicitly multi-scale feature reuse and consolidates
the feature hierarchies across scales. In the model, a ReLU follows
each Conv and DeConv layer. The architecture parameter details of
CBT-Net are listed in Table 1. We can treat U-Net as a special case
of our CBT-Net.

kCBT-Net. To further exploit multi-scale information, we adopt
the multi-path diagram from Chen et al. [6]. Specifically, we connect
k CBT-Net sub-modules sequentially to extract information from
input at different scales. We propagate the information captured by

one CBT-Net sub-module to the next CBT-Net sub-module to benefit
feature extraction. That is, the information extracted by CBT-Net-t
(2 ≤ t ≤ k) will be forwarded to the next sub-module CBT-Net-
(t−1). Figure 2 (b) gives such an example of kCBT-Net with k = 2.
In this example, CBT-Net-2 works on the downsampled data, and
CBT-Net-1 works on the data with the original resolution. kCBT-Net
propagates the information extracted by CBT-Net-2 to CBT-Net-1.
CBT-Net-1 takes every piece of information from CBT-Net-2 in the
commensurate layers to fuse the propagated information.

Table 1: CBT-Net architecture parameter details. Note that we set
the number of initial channels c to 64 for kCBT-Net.

type kernel size stride output channels
input N/A N/A 1
Conv+ReLU 4 2 c
TB 3 1 c
Conv+ReLU 4 2 2× c
TB 3 1 2× c
Conv+ReLU 4 2 4× c
TB 3 1 4× c
Conv+ReLU 4 2 8× c
3 × RB 3 1 8× c
DeConv+ReLU 4 2 8× c
Conv+ReLU 3 1 8× c
DeConv+ReLU 4 2 4× c
Conv+ReLU 3 1 4× c
DeConv+ReLU 4 2 2× c
Conv+ReLU 3 1 2× c
DeConv+ReLU 4 2 c
Conv 3 1 3

Loss function. Similar to An et al. [2], we jointly use magnitude
loss (Lm), angle loss (La), and Jacobian loss (L j) to optimize our
model, which is formulated as

L = λmLm +λaLa +λ jL j, (1)

where λm, λa, and λ j are the weights that control the relative impor-
tances of these losses. Lm, La, and L j are defined as

Lm =
N

∑
i=1
||V̂i−Vi||2, (2)

La =
N

∑
i=1

(1− cos(V̂i,Vi)), (3)

L j =
N

∑
i=1
||∇V̂i−∇Vi||2, (4)

where cos(,) is the cosine function, ∇ deotes the Jacobian function,
V̂i and Vi are the i-th training samples of the reconstructed and
GT vector fields, respectively, N refers to the number of training
samples, and || · ||2 denotes the L2 norm.



(a) half-cylinder (b) hurricane (c) supercurrent (d) supernova (e) Tangaroa (f) tornado

Figure 3: Comparison of PSNR (top row) and RAE (bottom row) of synthesized vector fields at each time step under different methods.

3.3 Optimization
The optimization of Scalar2Vec is as follows. The model takes
scalar field volume samples as input and initializes the network
parameters θ . Scalar2Vec is updated via stochastic gradient de-
scent. The training continues until reaching the given number of
epochs. During training, the gradients ∇θ L are computed accord-
ing to Equation (1), and the parameters θ are automatically updated
through the optimizer given the specified learning rate and computed
gradients. When it comes to inference, we run Scalar2Vec as usual,
except that the gradients are not calculated.

Table 2: Variables and dimension of each data set.
data set variables dimension (x× y× z×n)
half-cylinder [43] VM (320), VM (640), 640×240×80×100

VM (6,400)
VM, CLOUD, P,

hurricane [1] PRECIP, QICE, QRAIN, 500×500×100×48
QSNOW, QVAPOR

supercurrent [50] VM, RHO 256×128×32×100
supernova [4] VM 128×128×128×100
Tangaroa [42] VM 300×180×120×100
tornado [10] VM 128×128×128×48

.
4 RESULTS AND DISCUSSION

We tested the data sets shown in Table 2, where the number of
volume samples (n) refers to each data set’s different time steps. All
VM scalar fields were derived from their corresponding velocity
vector fields. Among the six data sets, the half-cylinder data set has
three VM ensembles with different Reynolds numbers, the hurricane
data set has eight variables, and the supercurrent data set has two
variables. The rest of the data sets have only VM scalar fields.

Scalar2Vec was implemented using PyTorch [41]. We used an
NVIDIA Tesla V100 graphics card with 32 GB of memory for train-
ing and inference. The network parameters were initialized using
normal initialization for optimization, and the Adam optimizer [34]
was used to update the parameters (β1 = 0.9,β2 = 0.999). We used
one training sample for each mini-batch and trained the model with
the “poly” learning rate policy. The initial learning rate was set to
10−4, and the maximum number of epochs was set to 2,000 for
all data sets. For each variable used for Scalar2Vec translation, we
randomly sampled 40% of volumes from the sequence for training,
and the rest of 60% were used for inference. All these parameters
were empirically decided based on experiments.

Note that for the ensemble half-cylinder, we trained the network
on VM (640) scalar fields and used the trained network to directly
infer the corresponding vector fields of VM (320), VM (640), and
VM (6,400). Therefore, no training time for VM (320) and VM
(6,400) is reported in Table 3. For hurricane and supercurrent, the
network was trained for each given variable from scratch. The 100

(a) supernova (b) Tangaroa (c) tornado

Figure 4: Visualization results using VM for Scalar2Vec translation.
Top to bottom: input VM scalar fields, streamlines traced from
translated vector fields, streamlines traced from GT vector fields.

time steps of the supercurrent data set was drawn evenly from the
original sequence of 900 time steps.

4.1 Results
Baselines. We compare Scalar2Vec with three baseline methods:
(1) Pix2Pix [31] (the first paired I2I translation framework), (2)
CycleGAN [58] (a deep learning method for unpaired I2I transla-
tion), and (3) V2V [23] (the first deep learning work in scientific
visualization for variable translation). We choose Pix2Pix [31] and
CycleGAN [58] from I2I translation works to compare with, for
two reasons. First, these works cover both paired and unpaired I2I
translation frameworks. Second, more importantly, these direct trans-
lation frameworks, unlike disentangled translation solutions (e.g.,
[36, 40]), can be applied to handle large data which fits our scenario.
We use the original architectures (i.e., the generators) from Pix2Pix,
CycleGAN, and V2V for the scalar-to-vector translation task. Note
that the generator of V2V is a special case of our kCBT-Net, and our
kCBT-Net is more powerful than the V2V architecture in capturing
multi-scale information. For a fair comparison, we set the same
number of initial, input, and output channels for all the methods.

All streamline visualization results for Scalar2Vec are produced
from the inferred vector field samples (i.e., these samples are not



Table 3: Average PSNR (dB), RAE, and SD values, total training
time (in days), and inference time per volume sample (in seconds) us-
ing different variables for translation. The best ones are highlighted
in bold (same for the rest of the tables in the Appendix).

data set method PSNR RAE SD train infer
Pix2Pix 37.23 0.238 5.85 — 69

half-cylinder CycleGAN 34.15 0.273 6.09 — 61
VM (320) V2V 37.98 0.220 5.77 — 97

Scalar2Vec 38.47 0.209 5.69 — 143
Pix2Pix 54.79 0.082 0.78 3.6 68

half-cylinder CycleGAN 46.43 0.127 0.82 3.3 61
VM (640) V2V 55.18 0.080 0.50 5.1 97

Scalar2Vec 58.61 0.063 0.40 7.5 142
Pix2Pix 37.49 0.231 5.62 — 69

half-cylinder CycleGAN 33.34 0.289 6.65 — 61
VM (6,400) V2V 38.15 0.221 5.48 — 97

Scalar2Vec 38.94 0.208 5.12 — 143
Pix2Pix 42.03 0.334 21.04 1.8 113

hurricane CycleGAN 40.99 0.381 25.34 1.6 101
(VM) V2V 44.03 0.313 20.82 2.6 160

Scalar2Vec 46.27 0.281 19.84 3.8 236
Pix2Pix 26.85 0.864 74.33 1.9 105

hurricane CycleGAN 24.01 1.021 98.39 1.6 94
(QRAIN) V2V 29.87 0.720 56.96 2.6 148

Scalar2Vec 36.06 0.513 43.33 3.8 218
Pix2Pix 38.46 0.435 31.47 1.8 106

hurricane CycleGAN 24.00 1.022 98.05 1.6 95
(QVAPOR) V2V 39.28 0.424 29.25 2.6 150

Scalar2Vec 41.83 0.369 27.62 3.8 220
Pix2Pix 59.88 0.068 1.42 0.6 0.24

supercurrent CycleGAN 54.89 0.102 1.61 0.5 0.22
(VM) V2V 62.25 0.060 1.28 0.8 0.34

Scalar2Vec 62.92 0.059 1.12 1.2 0.50
Pix2Pix 58.63 0.077 1.43 0.6 0.24

supercurrent CycleGAN 55.37 0.099 1.53 0.5 0.22
(RHO) V2V 62.48 0.059 1.42 0.8 0.35

Scalar2Vec 63.35 0.057 1.10 1.2 0.51
Pix2Pix 48.19 0.090 0.87 1.0 0.18

supernova CycleGAN 45.55 0.104 0.90 0.9 0.16
(VM) V2V 49.18 0.083 0.86 1.4 0.26

Scalar2Vec 51.13 0.071 0.60 2.1 0.38
Pix2Pix 52.87 0.081 0.61 3.5 25

Tangaroa CycleGAN 26.07 0.399 4.32 3.1 22
(VM) V2V 54.76 0.071 0.57 5.0 35

kCBT-Net 56.44 0.065 0.53 7.3 52
Pix2Pix 55.87 0.075 0.07 0.5 0.39

tornado CycleGAN 52.64 0.096 0.11 0.4 0.35
(VM) V2V 59.58 0.070 0.06 0.7 0.55

Scalar2Vec 65.53 0.055 0.04 1.0 0.81

used in training). We apply the same random seed set to trace
streamlines from the same vector field sample inferred from differ-
ent methods. The fourth-order Runge-Kutta method is used to trace
streamlines from the seed points in both forward and backward direc-
tions. Unless stated otherwise, we trace 500 streamlines to generate
all streamline visualization images shown in the paper. All data sets
use the same color map for streamline rendering. Streamline colors
show velocity magnitudes where blue to yellow to red indicate low
to medium to high velocity. Volume rendering of input scalar fields
uses different color and opacity maps for different data sets.

Evaluation metrics. For quantitative evaluation, we compute
peak signal-to-noise ratio (PSNR) and root-absolute-error (RAE)
between the reconstructed vector fields and GT vector fields at
the data level. The RAE measures the relative error between the
reconstructed vector field V̂ and GT vector field V

RAE(V̂,V) =

√√√√∑
L×H×W
i=1 ∑ j∈{u,v,w} ||V̂i, j−Vi, j||

∑
L×H×W
i=1 ∑ j∈{u,v,w} ||Vi, j||

, (5)

where L,H,W are the three spatial dimensions of the volume, u,v,w

(a) VM (320) (b) VM (640) (c) VM (6,400)

Figure 5: Visualization results of the half-cylinder data set using
different VM ensembles for Scalar2Vec translation. Top to bottom:
input VM scalar fields, streamlines traced from translated vector
fields, streamlines traced from GT vector fields.

are the three components of each vector, and || · || denotes the L1
norm. We also compute the streamline distance (SD) [12] at the
representation (i.e., streamline) level. SD is computed using the
mean of the closest point distances between streamlines traced from
the synthesized and GT vector fields with the same seed set.

Quantitative comparison. In Table 3, we provide quantitative
comparison results of Scalar2Vec with the three baseline solutions:
Pix2Pix, CycleGAN, and V2V. We compare the average PSNR and
RAE values of vector fields synthesized from different scalar fields,
and the SD values of their corresponding traced streamlines.

First of all, we can observe that Scalar2Vec yields the best results
for all cases in terms of PSNR (highest), RAE (lowest), and SD
(lowest) values, followed by V2V and Pix2Pix. CycleGAN pro-
duces the worst results. These consistent results across all data sets
demonstrate the overall quantitative advantages of Scalar2Vec over
other methods. For the half-cylinder data set, the results with VM
(640) are clearly better than those with VM (320) and VM (6,400).
This is because we use the network trained on VM (640) to directly
perform scalar-to-vector translation for VM (320), VM (640), and
VM (6,400). Therefore, performance degradation is expected. For
the hurricane data set, it is not surprising that the results with VM are
the best, followed by QVAPOR. Among the three variables, QRAIN
has the worst results. It is the least suitable variable for the trans-
lation task (refer to Figure 1), as its point set is farthest away from
that of VM. Among the four methods, CycleGAN performs much
worst when using either QVAPOR or QRAIN. For the supercurrent
data set, we can see that VM and RHO generate very similar results.
RHO wins over VM across all three metrics when using CycleGAN,
V2V, and Scalar2Vec, and only loses to VM when using Pix2Pix.

In terms of training time and inference time, we can see that
Scalar2Vec takes the most time for both training and inference across
all data sets, followed by V2V, Pix2Pix, and CycleGAN. No training
time is reported for half-cylinder VM (320) and VM (6,400) as
we train the network on VM (640) only. Scalar2Vec is the most
time-consuming method due to the use of CBC and the design of k
connected modules. However, the increased time cost is not too high



(a) QRAIN (b) QVAPOR (c) VM

(d) GT

Figure 6: Visualization results of the hurricane data set using differ-
ent variables for Scalar2Vec translation.

compared to the best baseline V2V, which is acceptable considering
their vital contributions to the improvements. Note that the reported
training and inference times use the model with the number of initial
channels c set to 64. Nevertheless, we can save more computation
cost (including training and inference times) and model storage
when setting c = 32 without sacrificing much performance, referring
to Table 3 in the Appendix.

In Figure 3, we compare PSNR and RAE of synthesized vec-
tor fields at each time step using Pix2Pix, CycleGAN, V2V, and
Scalar2Vec. We can see that overall, Scalar2Vec performs the best
(with the highest PSNR and lowest RAE values). For the supercur-
rent data set, the performance changes dramatically. This is because
the flow pattern changes much among different time steps sampled
from the original sequence. The changes among different time steps
are small for the tornado data set. There is a sharp change in the
PSNR and RAE curves for the supernova data set at the 61st time
step due to the significant flow pattern changes.

Qualitative results of Scalar2Vec. In Figures 4 to 7, we show
the visualization results of Scalar2Vec translation. Volume rendering
results of the scalar fields are provided so that we can see how
different various scalar fields are and how different the scalar and
vector fields are. Streamlines traced from the recovered vector fields
are compared to those generated from the GT ones.

In Figure 4, we show Scalar2Vec translation results of three
data sets (supernova, Tangaroa, and tornado) using the VM scalar
field as input. Streamline visualization results indicate that the
overall translation quality is good. Nevertheless, for the supernova
data set, Scalar2Vec does not capture well the flow pattern around
the supernova’s core, which changes very dramatically. The same
conclusion can be drawn for the Tangaroa data set, where we can see
apparent differences around the highlighted interesting flow patterns.
The tornado data set’s result is very good, as we can only spot slight
differences for a few streamlines (referring to ellipse highlights).

In Figure 5, we show results of the half-cylinder data set using
the network trained on VM (640) for Scalar2Vec translation. It is
clear that the result with VM (640) is closer to the corresponding
GT result, while those with VM (320) and VM (6,400) exhibits

(a) RHO (b) VM

(c) GT

Figure 7: Visualization results of the supercurrent data set using
different variables for Scalar2Vec translation.

more apparent differences with respect to their GT results. These
qualitative results echo the quantitative results reported in Table 3.

In Figure 6, we show Scalar2Vec translation results of the hurri-
cane data set using QRAIN, QVAPOR, and VM. Overall, we can
observe that VM achieves the best visual quality, followed by QVA-
POR. QRAIN gets the worst result. These qualitative results are
consistent with the quantitative results reported in Table 3.

In Figure 7, we show results of the supercurrent data set using
VM and RHO for Scalar2Vec translation. We can see that RHO
generates a slightly better streamline visualization result compared
to the GT, referring to ellipse highlights. These close visualization
results are echoed in the quantitative results reported in Table 3 as
the differences between VM and RHO are relatively small.

Qualitative comparison. In Figure 8, we compare Scalar2Vec
(kCBT-Net) with Pix2Pix, CycleGAN, and V2V. We choose volume
samples different from what have been shown in Figures 4 to 7 for
inference. For the half-cylinder data set using VM (640), we can
see that all four methods synthesize the vector field reasonably well.
Taking a close examination of the “hole” in the middle-left region,
Scalar2Vec performs slightly better than the other three. For the
hurricane data set using VM, all four methods generate acceptable
results. Still, Scalar2Vec produces the best result around the hurri-
cane’s eye (i.e., the overall shape captured by the red streamlines).
For the supercurrent data set using RHO, all four methods lead to
good results. Still, Scalar2Vec produces the best result at the bottom-
center region. For the supernova data set using VM, again, all four
methods generate similar results. Scalar2Vec outperforms the other
three methods at the central region. For the Tangaroa data set using
VM, we can see that CycleGAN produces the worst result as all
streamlines are mostly straight. This is because the architecture of
CycleGAN is simple, which cannot capture dramatically different
patterns. The other three methods (Pix2Pix, V2V, and Scalar2Vec)
have close results. A close comparison shows that Scalar2Vec and
V2V slightly outperform Pix2Pix. These qualitative results echo
the quantitative results shown in Table 3: PSNR and RAE values of
CycleGAN are much worse than other methods, and Pix2Pix lags
behind V2V and Scalar2Vec. For the tornado data set using VM,
we can see that the overall flow is recovered very well across all
four methods. Paying close attention to the two streamlines at the
middle-left region, we can see that Scalar2Vec gives the best result.

In Figure 9, we select four cases from Figure 8 and show a
filtered version of streamline visualization along with seeding points
so that their differences can be easily observed. For each case,



(a) input (b) Pix2Pix (c) CycleGAN (d) V2V (e) kCBT-Net (f) GT

Figure 8: Streamline visualization results with different methods. Top to bottom: streamlines traced from translated vector fields with
half-cylinder (VM (640)), hurricane (VM), supercurrent (RHO), supernova (VM), Tangaroa (VM), and tornado (VM) input scalar fields.

among the 500 streamlines randomly traced, we select a subset
that passes through high entropy regions. The entropy is computed
based on the variations of vector direction and magnitude. We
gradually increase the entropy threshold to only keep a small number
of streamlines for visualization clarity. The selected streamlines
correspond to interesting flow features and patterns. The filtered
streamline visualization results now clearly show that Scalar2Vec
outperforms Pix2Pix, CycleGAN, and V2V as the shape and relative
positions of the selected streamline match those of the GT the best.

In Figure 10, we compare vorticity visualization results using hur-
ricane (VM) and supernova (VM) data sets. To better illustrate the
differences, we compute pixel-wise differences (i.e., the Euclidean
distances in the CIELUV color space) of volume rendering images
generated from vorticity scalar fields derived from their velocity vec-
tor fields. From the difference images, we can see that for both data
sets, kCBT-Net generates much closer results to GT than Pix2Pix,
CycleGAN, and V2V.

Evaluation of data reduction. We consider a compression al-
gorithm (i.e., SZ [35]) to further save data storage using the half-

cylinder data set of different ensembles. We compare our method
with SZ against directly compressing vector fields using SZ. For our
method, the VM volumes are compressed using SZ under the error
bound of 0.1 for data reduction and later translated to their corre-
sponding vector fields. The data reduction rate, which is defined as
the ratio between the size of original vector fields and the sum of the
compressed VMs (320, 640, 6400), 40% of compressed VM (640)
vector fields, and the network model, is 68.08. The data reduction
rate for direct SZ compression is set the same for a fair compari-
son. The PSNRs (RAEs) of translated vector fields (320), (640),
and (6400) are 35.85 (0.268), 39.71 (0.228), and 35.83 (0.270), re-
spectively, and the PSNRs (RAEs) of SZ compressed vector fields
(320), (640), and (6400) are 35.18 (0.309), 34.99 (0.314), and 35.07
(0.315), respectively. In Figure 11, we compare streamline visual-
ization results with SZ and kCBT-Net. We can see that kCBT-Net
produces closer results to GT than SZ, especially on the VM (640)
data set, which matches the quantitative results of PSNRs (RAEs).

Summary. Based on the above results, we conclude that
Scalar2Vec outperforms the three baseline methods, Pix2Pix, Cy-



(a) Pix2Pix (b) CycleGAN (c) V2V (d) kCBT-Net (e) GT

Figure 9: Visualization results of filtered streamlines with different methods. Top to bottom: streamlines traced from translated vector fields
with half-cylinder (VM (640)), hurricane (VM), supercurrent (RHO), and tornado (VM) input scalar fields. Out of the 500 streamlines shown in
Figure 8, 5, 8, 14, and 21 streamlines are shown, respectively, from top to bottom. Seeding points are shown as green spheres. For half-cylinder
(VM (640)), no seeding points are shown due to the cropped view.

cleGAN, and V2V. This demonstrates that (1) Scalar2Vec is more
effective in dealing with the more challenging task (i.e., scalar-
to-vector translation); (2) kCBT-Net is a more powerful model in
exploiting multi-scale information and handing multivariate patterns.
A parameter study on architecture design, module connection, initial
channels, and loss functions is given in the Appendix.

4.2 Limitations and Future Work

Our Scalar2Vec work has the following limitations. First, although
we have shown that Scalar2Vec can learn Scalar2Vec translation
from not only VM but also other scalar fields, the current network
needs to be trained again given a different input scalar variable. The
only exception we make is the ensemble half-cylinder data set, but
we witness a considerable performance drop. We will further ex-
plore how to generalize this framework to avoid training the network
from scratch. Second, we simply treat time-dependent vector fields
as sample data, randomly draw a certain percentage of samples for
network training, and use the remaining samples for inference. As
such, the framework currently does not consider unsteady vector
fields, and we do not provide video clips showing temporally co-
herent inference results as V2V [23]. However, we will investigate
how well the method operates in time-dependent scenarios in the
future. Third, Scalar2Vec needs 40% of volume samples for ef-
fective training and inference. We will study how to improve the
solution so that fewer samples are required. Fourth, although we
show that Scalar2Vec can preserve physical quantities such as vortic-
ity better than other methods, Scalar2Vec is not a physics-informed
deep learning solution. Thus, incorporating the underlying physics
(e.g., divergence-free properties) into the translation task calls for
new solutions. Addressing these limitations will make Scalar2Vec a
valuable alternative for domain scientists to recover the vector field

data from their scalar field counterparts.

5 CONCLUSIONS

We have presented Scalar2Vec, a new deep learning approach that
translates scalar fields to velocity vector fields. The proposed frame-
work includes two steps: variable selection and field translation.
Variable selection chooses variables from multivariate or ensemble
scalar fields that are suitable for the translation task. Inspired by I2I
translation and, in particular, image colorization, we design a kCBT-
Net to achieve field translation. We have shown that Scalar2Vec
outperforms other deep learning solutions (Pix2Pix, CycleGAN,
and V2V), using quantitative and qualitative results. With the suc-
cess of recovering vector fields from their scalar field counterparts,
Scalar2Vec provides a new option for scientists to determine the
desired data storage and I/O strategy for their simulations.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Sci-
ence Foundation through grants IIS-1455886, CNS-1629914, DUE-
1833129, IIS-1955395, IIS-2101696, and OAC-2104158. The au-
thors would like to thank the anonymous reviewers for their insight-
ful comments.

REFERENCES

[1] IEEE Visualization 2004 Contest. http://vis.computer.org/
vis2004contest/data.html. Accessed: 2021-01-10.

[2] Y. An, H.-W. Shen, G. Shan, G. Li, and J. Liu. STSRNet: Deep
joint space-time super-resolution for vector field visualization. IEEE
Computer Graphics and Applications, 41(6):122–132, 2021.

[3] M. Berger, J. Li, and J. A. Levine. A generative model for volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
25(4):1636–1650, 2019.

http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html


(a) Pix2Pix (b) CycleGAN (c) V2V (d) kCBT-Net (e) GT

Figure 10: Vorticity visualization results with different methods. Top to bottom: hurricane (VM) and supernova (VM). (e) shows volume
rendering of the vorticity scalar field derived from the GT velocity vector field. (a) to (d) show the pixel-wise difference images of vorticity
visualizations from synthesized and GT data.

[4] J. M. Blondin and A. Mezzacappa. Pulsar spins from an instability in
the accretion shock of supernovae. Nature, 445(7123):58–60, 2007.

[5] J. Chen, S. Banerjee, A. Grama, W. J. Scheirer, and D. Z. Chen. Neuron
segmentation using deep complete bipartite networks. In Proceed-
ings of International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 21–29, 2017.

[6] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen. Combining
fully convolutional and recurrent neural networks for 3D biomedical
image segmentation. In Proceedings of Advances in Neural Information
Processing Systems, pp. 3036–3044, 2016.

[7] H.-C. Cheng, A. Cardone, S. Jain, E. Krokos, K. Narayan, S. Subra-
maniam, and A. Varshney. Deep-learning-assisted volume visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics,
25(2):1378–1391, 2019.

[8] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. In Proceedings
of IEEE International Conference on Computer Vision, pp. 415–423,
2015.

[9] Y. Ci, X. Ma, Z. Wang, H. Li, and Z. Luo. User-guided deep anime
line art colorization with conditional adversarial networks. In Proceed-
ings of ACM International Conference on Multimedia, pp. 1536–1544,
2018.

[10] R. A. Crawfis and N. Max. Texture splats for 3D scalar and vector field
visualization. In Proceedings of IEEE Visualization Conference, pp.
261–267, 1993.

[11] A. Gonzalez-Garcia, J. v. d. Weijer, and Y. Bengio. Image-to-image
translation for cross-domain disentanglement. In Proceedings of Ad-
vances in Neural Information Processing Systems, pp. 1294–1305,
2018.

[12] P. Gu, J. Han, D. Z. Chen, and C. Wang. Reconstructing unsteady
flow data from representative streamlines via diffusion and deep learn-
ing based denoising. IEEE Computer Graphics and Applications,
41(6):111–121, 2021.

[13] P. Gu, H. Zheng, Y. Zhang, C. Wang, and D. Z. Chen. kCBAC-Net:
Deeply supervised complete bipartite networks with asymmetric con-
volutions for medical image segmentation. In Proceedings of Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 337–347, 2021.

[14] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J.-X. Wang,
and C. Wang. SSR-VFD: Spatial super-resolution for vector field data
analysis and visualization. In Proceedings of IEEE Pacific Visualization
Symposium, pp. 71–80, 2020.

[15] J. Han, J. Tao, and C. Wang. FlowNet: A deep learning framework

for clustering and selection of streamlines and stream surfaces. IEEE
Transactions on Visualization and Computer Graphics, 26(4):1732–
1744, 2020.

[16] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. Flow field
reduction via reconstructing vector data from 3D streamlines using
deep learning. IEEE Computer Graphics and Applications, 39(4):54–
67, 2019.

[17] J. Han and C. Wang. SSR-TVD: Spatial super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 2020. Accepted.

[18] J. Han and C. Wang. TSR-TVD: Temporal super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 26(1):205–215, 2020.

[19] J. Han and C. Wang. SurfNet: Learning surface representations via
graph convolutional network. Computer Graphics Forum, 2022. Con-
ditionally Accepted.

[20] J. Han and C. Wang. TSR-VFD: Generating temporal super-resolution
for unsteady vector field data. Computers & Graphics, 2022. Accepted.

[21] J. Han and C. Wang. VCNet: A generative model for volume comple-
tion. Visual Informatics, 2022. Conditionally Accepted.

[22] J. Han, H. Zheng, D. Z. Chen, and C. Wang. STNet: An end-to-end
generative framework for synthesizing spatiotemporal super-resolution
volumes. IEEE Transactions on Visualization and Computer Graphics,
28(1):270–280, 2022.

[23] J. Han, H. Zheng, Y. Xing, D. Z. Chen, and C. Wang. V2V: A deep
learning approach to variable-to-variable selection and translation for
multivariate time-varying data. IEEE Transactions on Visualization
and Computer Graphics, 27(2):1290–1300, 2021.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[25] M. He, D. Chen, J. Liao, P. V. Sander, and L. Yuan. Deep exemplar-
based colorization. ACM Transactions on Graphics, 37(4):1–16, 2018.

[26] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S.
Nashed, and T. Peterka. InSituNet: Deep image synthesis for parameter
space exploration of ensemble simulations. IEEE Transactions on
Visualization and Computer Graphics, 26(1):23–33, 2020.

[27] F. Hong, C. Liu, and X. Yuan. DNN-VolVis: Interactive volume
visualization supported by deep neural network. In Proceedings of
IEEE Pacific Visualization Symposium, pp. 282–291, 2019.

[28] F. Hong, J. Zhang, and X. Yuan. Access pattern learning with long
short-term memory for parallel particle tracing. In Proceedings of



(a) VM (320) (b) VM (640) (c) VM (6,400)

Figure 11: Visualization results of the half-cylinder data set with
different methods using different VM ensembles. Top to bottom:
streamlines traced from the SZ compressed then decompressed vec-
tor fields, streamlines traced from kCBT-Net translated vector fields,
streamlines traced from GT vector fields.

IEEE Pacific Visualization Symposium, pp. 76–85, 2018.
[29] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal un-

supervised image-to-image translation. In Proceedings of European
Conference on Computer Vision, pp. 172–189, 2018.

[30] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color! joint end-
to-end learning of global and local image priors for automatic image
colorization with simultaneous classification. ACM Transactions on
Graphics, 35(4):1–11, 2016.

[31] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1125–1134,
2017.

[32] J. Jakob, M. Gross, and T. Günther. A fluid flow data set for machine
learning and its application to neural flow map interpolation. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1279–
1289, 2021.

[33] B. Kim and T. Günther. Robust reference frame extraction from un-
steady 2D vector fields with convolutional neural networks. Computer
Graphics Forum, 38(3):285–295, 2019.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Proceedings of International Conference for Learning Representa-
tions, 2015.

[35] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello.
Error-controlled lossy compression optimized for high compression
ratios of scientific datasets. In Proceedings IEEE International Confer-
ence on Big Data, pp. 438–447, 2018.

[36] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image trans-
lation networks. In Proceedings of Advances in Neural Information
Processing Systems, pp. 700–708, 2017.

[37] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440, 2015.

[38] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9(11):2579–2605, 2008.

[39] M. Mirza and S. Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[40] T. Park, J.-Y. Zhu, O. Wang, J. Lu, E. Shechtman, A. A. Efros, and

R. Zhang. Swapping autoencoder for deep image manipulation. arXiv
preprint arXiv:2007.00653, 2020.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. PyTorch: An imper-
ative style, high-performance deep learning library. In Proceedings of
Advances in Neural Information Processing Systems, pp. 8024–8035,
2019.

[42] S. Popinet, M. Smith, and C. Stevens. Experimental and numerical
study of the turbulence characteristics of airflow around a research
vessel. Journal of Atmospheric and Oceanic Technology, 21(10):1575–
1589, 2004.

[43] I. B. Rojo and T. Günther. Vector field topology of time-dependent
flows in a steady reference frame. IEEE Transactions on Visualization
and Computer Graphics, 26(1):280–290, 2019.

[44] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional net-
works for biomedical image segmentation. In Proceedings of Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234–241, 2015.

[45] M. Saito and Y. Matsui. Illustration2Vec: A semantic vector repre-
sentation of illustrations. In Proceedings of SIGGRAPH Asia 2015
Technical Briefs, pp. 1–4, 2015.

[46] N. Shi and Y. Tao. CNNs based viewpoint estimation for volume visu-
alization. ACM Transactions on Intelligent Systems and Technology,
10(3):27:1–27:22, 2019.

[47] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In Proceedings of International
Conference on Learning Representations, 2015.

[48] J.-W. Su, H.-K. Chu, and J.-B. Huang. Instance-aware image coloriza-
tion. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7968–7977, 2020.

[49] H. Tang, D. Xu, N. Sebe, Y. Wang, J. J. Corso, and Y. Yan. Multi-
channel attention selection GAN with cascaded semantic guidance for
cross-view image translation. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2417–2426, 2019.

[50] Y.-L. Wang, A. Glatz, G. J. Kimmel, I. S. Aranson, L. R. Thoutam,
Z.-L. Xiao, G. R. Berdiyorov, F. M. Peeters, G. W. Crabtree, and W.-K.
Kwok. Parallel magnetic field suppresses dissipation in superconduct-
ing nanostrips. Proceedings of the National Academy of Sciences of
the United States of America, 114(48):E10274–E10280, 2017.

[51] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric iso-
surface rendering with deep learning-based super-resolution. IEEE
Transactions on Visualization and Computer Graphics, 27(6):3064–
3078, 2021.

[52] W. Xian, P. Sangkloy, V. Agrawal, A. Raj, J. Lu, C. Fang, F. Yu, and
J. Hays. TextureGAN: Controlling deep image synthesis with texture
patches. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8456–8465, 2018.

[53] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A tempo-
rally coherent, volumetric GAN for super-resolution fluid flow. ACM
Transactions on Graphics, 37(4):95:1–95:15, 2018.

[54] Z. Xu, T. Wang, F. Fang, Y. Sheng, and G. Zhang. Stylization-based
architecture for fast deep exemplar colorization. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp.
9363–9372, 2020.

[55] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In
Proceedings of European Conference on Computer Vision, pp. 649–666,
2016.

[56] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. Efros.
Real-time user-guided image colorization with learned deep priors.
ACM Transactions on Graphics, 36(4):119, 2017.

[57] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin. Vol-
ume upscaling with convolutional neural networks. In Proceedings of
Computer Graphics International, pp. 38:1–38:6, 2017.

[58] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings
of IEEE International Conference on Computer Vision, pp. 2223–2232,
2017.



APPENDIX

Besides the main results presented in the paper, we conduct a param-
eter study to investigate the performance of Scalar2Vec, including
architecture design, module connection, initial channels, and loss
functions.

(a) CBT-Net (b) 2CBT-Net (c) 3CBT-Net (d) GT

Figure 1: Streamline visualization results with different k for kCBT-
Net. Top to bottom: streamlines traced from translated vector fields
with hurricane (QVAPOR), supernova (VM), and Tangaroa (VM)
input scalar fields.

Table 1: Average PSNR (dB) and RAE values, and model size (GB)
using different architecture designs.

data set architecture PSNR RAE model size

hurricane (QVAPOR)
CBT-Net 40.13 0.406 0.401
2CBT-Net 41.83 0.369 1.136
3CBT-Net 41.85 0.369 1.871

supernova (VM)
CBT-Net 50.71 0.076 0.401
2CBT-Net 51.13 0.071 1.136
3CBT-Net 51.14 0.071 1.871

Tangaroa (VM)
CBT-Net 55.45 0.071 0.401
2CBT-Net 56.44 0.065 1.136
3CBT-Net 56.53 0.065 1.871

Architecture design. To study the impact of the number of
modules for Scalar2Vec translation, we conduct experiments with
the hurricane (QVAPOR), supernova (VM), and Tangaroa (VM)
input scalar fields by setting different values (1 to 3) for k. We
denote these different architectures as kCBT-Net when k > 1. In
Figure 1, we show the streamlines traced from translated vector fields
produced by different settings (i.e., kCBT-Net). We can see that the
visual results do not change significantly with different architecture
designs. As shown in Table 1, although 3CBT-Net achieves the best
average PSNR and RAE values, its advantage over 2CBT-Net is
slim. Considering the model size (which is data set independent),
we select 2CBT-Net as a tradeoff. Referring to Table 3 in the paper,
we can see that Scalar2Vec (using 2CBT-Net) outperforms V2V
in terms of both PSNR and RAE. For hurricane (QVAPOR), the
differences of PSNR and RAE are 2.55 and 0.055. For supernova
(VM), the differences are 1.95 and 0.012. For Tangaroa (VM), the
differences are 1.68 and 0.006. All these improvements confirm the
effectiveness of kCBT-Net on exploring multi-scale information.

Module connection. A natural strategy to sequentially connect
the sub-modules is to copy the result from CBT-Net-t to the commen-
surate layer in CBT-Net-(t −1). There are different ways to achieve
this: (1) kCBT-Net: as shown within the red dashed line in Figure 2

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU Conv, ReLU, RB, RB, RB, DeConv, ReLU

CBT-Net-1CBT-Net-2

Conv, ReLU  TB

Conv, ReLU  TB

(a) scheme-1
Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU Conv, ReLU, RB, RB, RB, DeConv, ReLU

CBT-Net-1CBT-Net-2

Conv, ReLU  TB

Conv, ReLU  TB

(b) scheme-2
Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU

Conv, ReLU, DeConv, ReLU Conv, ReLU, RB, RB, RB, DeConv, ReLU

CBT-Net-1CBT-Net-2

Conv, ReLU  TB

Conv, ReLU  TB

(c) scheme-3

Figure 2: Three different module connection schemes, which are
variants of the baseline connection shown within the red dashed line
in Figure 2 of the paper.

Table 2: Average PSNR (dB) and RAE values, and model size (GB)
using different module connection schemes.

data set scheme PSNR RAE model size

supercurrent (VM)

kCBT-Net 62.92 0.059 1.136
scheme-1 62.70 0.059 1.141
scheme-2 62.71 0.059 1.151
scheme-3 62.69 0.059 1.163

tornado (VM)

kCBT-Net 65.53 0.055 1.136
scheme-1 64.83 0.057 1.141
scheme-2 64.99 0.057 1.151
scheme-3 64.75 0.057 1.163

of the paper. we copy every piece of information from CBT-Net-t to
CBT-Net-(t −1) in the commensurate layers; (2) besides copy every
piece of information from CBT-Net-t to CBT-Net-(t −1) in the com-
mensurate layers, we gradually copy all piece of information from
CBT-Net-t to CBT-Net-(t −1) until forming a fully-connected CBC
structure, as illustrated in Figure 2 (a), (b), and (c), respectively. We
denote these module connection schemes as scheme-1, scheme-2,
and scheme-3, respectively. In Figure 3, we show the streamlines
traced from translated vector fields generated using different mod-
ule connection schemes. For a clear comparison, we show filtered
streamline visualization results where we select a subset from the
500 streamlines that passes through high entropy regions. The high-
lights for both supercurrent (VM) and tornado (VM) results show
that kCBT-Net leads to streamlines that are more similar to the GT
ones. As shown in Table 2, kCBT-Net slightly outperforms the three
schemes in terms of both PSNR and RAE. From the baseline kCBT-
Net connection, the number of connections increases from scheme-1
to scheme-3, which leads to the increased model size. Therefore, we
choose the baseline kCBT-Net connection instead of other schemes
for Scalar2Vec.

Initial channels. For the number of initial channels c (refer to
Table 1 in the paper), we experiment with different settings of 16,
32, 64, and 128 on the hurricane (QVAPOR) and tornado (VM)
data sets. Figure 4 shows that the impact of using different c is not
significant. Still, we can see from ellipse highlights for the tornado
streamlines that using 64 initial channels achieves the most similar
results compared with the GT streamlines. Table 3 shows that the



(a) kCBT-Net (b) scheme-1 (c) scheme-2 (d) scheme-3 (e) GT

Figure 3: Visualization results of filtered streamlines with different module connection schemes. Top and bottom: streamlines traced from
translated vector fields with supercurrent (VM) and tornado (VM) input scalar fields. Out of the 500 streamlines, 150 and 100 streamlines are
shown for these two data sets, respectively.

(a) 16 (b) 32 (c) 64 (d) 128 (e) GT

Figure 4: Streamline visualization results using different numbers of initial channels. Top and bottom: streamlines traced from translated
vector fields with hurricane (QVAPOR) and tornado (VM) input scalar fields.

Table 3: Average PSNR (dB) and RAE values, and model size (GB)
using different numbers of initial channels c.

data set c PSNR RAE model size

hurricane (QVAPOR)

16 40.43 0.397 0.071
32 41.40 0.377 0.284
64 41.83 0.369 1.136
128 41.56 0.376 4.541

tornado (VM)

16 55.63 0.085 0.071
32 61.86 0.066 0.284
64 65.53 0.055 1.136
128 65.55 0.055 4.541

model size increases by four folds as c doubles. Considering both
PSNR and RAE, we decide to use 64 initial channels as it turns out
to be the overall best choice.

Loss functions. To explore the impact of different loss func-
tions (i.e., the addition of angle loss (La) and Jacobian loss (L j))
for Scalar2Vec translation, we conduct experiments with hurricane
(VM) and tornado (VM) input scalar fields. Specifically, we start
with magnitude loss Lm as L1, then add L j to get L2, and finally

Table 4: Average PSNR (dB) and RAE values using different loss
functions.

data set loss functions PSNR RAE

hurricane (VM)
L1= Lm 45.83 0.287
L2=Lm+10L j 45.96 0.285
L3=Lm+10L j+0.005La 46.27 0.281

tornado (VM)
L1=Lm 64.15 0.057
L2=Lm+10L j 65.35 0.056
L3=Lm+10L j+0.005La 65.53 0.055

add La to form the final loss (L3). We let Lm dominating the
loss when determining the weights, and all the weights are empiri-
cally decided based on experiments. In Figure 5, we compare the
streamlines visualization results with different loss functions. For
the hurricane data set using the VM input scalar field, L3 (i.e., the
combination of magnitude, angle, and Jacobian losses) produces
the best results around the hurricane’s eye (i.e., the innermost blue
cluster of streamlines at the eye). The same observation can be
obtained for the tornado data set using the VM input scalar field,



(a) L1 (b) L2 (c) L3 (d) GT

Figure 5: Streamline visualization results with different loss functions. Top to bottom: streamlines traced from translated vector fields with
hurricane (VM) and tornado (VM) input scalar fields.

referring to the ellipse highlights. The improvements in Table 4
on both hurricane (VM) and tornado (VM) data sets indicate the
effectiveness of the addition of angle and Jacobian losses.


	template
	Introduction
	Related Work
	Scalar2Vec
	Variable Selection
	Field Translation

	Results and Discussion
	Limitations and Future Work

	Conclusions

	appendix



