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ABSTRACT
Recent advances in remote sensing open up unprecedented opportu-
nities to obtain a rich set of visual features of objects on the earth’s
surface. In this paper, we focus on a single-image super-resolution
(SISR) problem in remote sensing, where the objective is to gen-
erate a reconstructed satellite image of a high spatial resolution
from a satellite image of a relatively low resolution. This problem
is motivated by the lack of high-resolution satellite images in many
remote sensing applications (e.g., due to the cost of high resolution
sensors, communication bandwidth constraints, and historic hard-
ware limitations). Two important challenges exist in solving our
problem: i) it is not a trivial task to reconstruct a satellite image
of high resolution that meets the human perceptual requirement
from a single low-resolution image; ii) it is challenging to rigor-
ously quantify the uncertainty of the results of an SISR scheme
in the absence of ground truth data. To address the above chal-
lenges, we develop UA-CNN, an uncertainly-aware convolutional
neural network framework, to reconstruct a high-quality satellite
image from a low-resolution image by designing novel neural net-
work architectures and integrating an uncertainty quantification
model with the framework. We evaluate UA-CNN on a real-world
remote sensing application on land usage classifications. The results
show that UA-CNN significantly outperforms the state-of-the-art
super-resolution baselines in terms of accurately reconstructing
high-resolution satellite images under various evaluation scenarios.
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1 INTRODUCTION
With the advent of high precision optical and image processing
technologies, satellite-based remote sensing has become a powerful
sensing paradigm that can obtain abundant visual features of the
objects residing on the earth’s surface [36]. Examples of remote
sensing applications include performing damage assessment during
disaster scenarios [8], predicting the poverty in underdeveloped
areas [22], detecting cholera outbreaks from water bodies [28], and
monitoring refugee movements in armed-conflict zones [34]. Due
to its non-intrusive nature (i.e., not requiring any physical contact),
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remote sensing is increasingly exploited in scenarios where the de-
tailed analysis of an area cannot be simply performed by modeling
or field observations [42].

In this paper, we focus on a single-image super-resolution (SISR)
problem in remote sensing, where the objective is to generate a
reconstructed satellite image with a high spatial resolution from a
single satellite imagewith a relatively low resolution. The SISR prob-
lem is much more challenging than the traditional super-resolution
problems that focus on reconstructing a high-resolution image
from multiple low-resolution images of the same scene [45]. Our
problem is motivated by the observation that the information ex-
traction at a fine-grained scale of an object in remote sensing often
requires a set of high-resolution satellite images [36]. One example
of such applications is the classification of diversified land usages in
a city (e.g., urban areas, trees, lakes, and transportation) where the
classification results can help address important urban and social
questions (e.g., assessment of urban environmental impacts and
potential anthropogenic activities involved on land) [29]. Figure 1
shows an example of a land usage classification scenario involving
different geographical components in an area. We observe that
different land classes can be easily messed up if the resolution of
the satellite image is not sufficiently high. For example, with the
high-resolution image in Figure 1(a), the lake is correctly classified.
However, in the case of the low-resolution image in Figure 1(b),
both the lake and some buildings are misclassified as trees.

Figure 1: Classification of Diversified Land Usage Classes

While the high-resolution satellite images are normally more
desirable as shown in the above example, they are not always avail-
able in remote sensing applications [15]. The reasons are multi-fold.
First, high-resolution sensor packages are often quite expensive [36].
For example, a set of 8 high-resolution multi-spectral sensors kit
required for a reasonable spatial resolution (e.g., 10m×10m) costs
more than 100,000 USD [13]. Second, many remote sensing applica-
tions need to utilize the historical satellite imagery data to study the
spatial and temporal dynamics of an area or phenomenon (e.g., the
assessment of land cover changes over time [3], the study of popu-
lation migration due to geological changes [5]). Such applications
often require the access to a long duration of imagery data (e.g.,
more than 10 years). Unfortunately, the historic satellite images are
often only available in relatively low-resolutions, e.g., the satellite
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images before 2010 are primarily collected by Landsat 1-7 satel-
lites that only provide low-resolution images (e.g., 30m×30m) [31].
Third, it is hardly possible to have the 24/7 high-resolution image
coverage of all objects on earth given the current satellite image
updating frequency (i.e., from daily to yearly) and communication
bandwidth constraints [49]. Therefore, there exists a strong de-
mand to develop an effective solution to accurately reconstruct
high-resolution images from the low-resolution ones.

Efforts have been made to address the super-resolution problem
in image processing, remote sensing, and deep learning [11, 27, 30,
36, 41, 44]. Examples of those solutions include regularization-based
image interpolation [30], image-up-scaling using sub-pixel mor-
phing [44], single-frame super-resolution through convolutional
neural networks [41], and single-image upscaling using deep resid-
ual networks [27]. However, two important challenges have not
been well addressed by current solutions. We elaborate them below.

Perceptual Quality Assurance. The first challenge lies in provid-
ing the desired perceptual quality assurance of the reconstructed
satellite images from an SISR solution. The perceptual quality is
a metric defined to describe the quality of a reconstructed satel-
lite image as perceived by humans [6]. Previous efforts in remote
sensing often failed to provide such perceptual quality of the recon-
structed images [11, 36, 41] due to two important limitations. First,
current SISR solutions in remote sensingmainly focus on improving
the pixel-wise estimation accuracy (e.g., peak signal-to-noise ra-
tio (PSNR), structural similarity index (SSIM)) of the reconstructed
images [11, 41], and ignore the actual perceptual quality, which is re-
cently shown to be more appropriate in assessing the performance
of SISR solutions [6, 50]. Second, existing solutions either introduce
excessive noise or accidentally ruin the structural integrity (e.g.,
making building outlines fuzzier) in the reconstructed satellite im-
ages [36, 41]. Therefore, current super-resolution schemes often
generate images that are ambiguous to human perception and lead
to inappropriate decision makings (e.g., inaccurate land usage clas-
sifications as shown in Figure 1). The perceptual quality assurance
of the reconstructed images remains to be a challenging problem
in the SISR research of remote sensing.

Uncertainty-aware Super-resolution. The second challenge lies
in the rigorous uncertainty quantification of the results (i.e., RGB
values in reconstructed images) generated by an SISR scheme in the
absence of ground truth data. Current super-resolution solutions
(especially the deep learning based ones) mainly focus on improv-
ing the visual quality of the reconstructed images by imposing
complex neural architectures or inference models but ignore an
important aspect of their results: uncertainty quantification. For
example, in an SISR based disaster damage assessment applica-
tion, the uncertainty quantification of the assessment results (e.g.,
estimation confidence of an area being severely damaged in a recon-
structed satellite image) is critical to make life-saving decisions (e.g.,
when and where to dispatch the rescue teams) [12]. An important
question that remains to be answered in this challenge is how to
rigorously quantify the uncertainty of the results produced by SISR
schemes without knowing the ground truth labels a priori and how
to leverage the uncertainty quantification results to improve the
quality of reconstructed images.

To address the above challenges, we develop an uncertainty-
aware convolutional neural network (UA-CNN) approach to solve

the SISR problem in remote sensing applications. In particular, to
address the first challenge, we develop a duo-branch neural network
design that consists of two effective yet complementary convolu-
tional neural networks (i.e., Duo-CNN). The Duo-CNN reconstructs
satellite images with high perceptual quality by designing a new
hybrid upscaling neural network architecture that effectively re-
duces the noises and keeps the structural integrity in the recon-
struction process. To address the second challenge, we develop an
uncertainty-driven ensemble model that integrates the uncertainty
quantification with the deep convolutional neural networks in Duo-
CNN to improve the quality of the reconstructed satellite images. To
the best of our knowledge, UA-CNN is the first uncertainty-aware
neural network approach to address the SISR problem in remote
sensing. The perceptual quality-driven and uncertain-aware nature
of our framework makes it possible to reconstruct a high resolution
image with perceptual quality assurance from a single low reso-
lution image. We evaluate UA-CNN through a real-world remote
sensing application where the satellite imagery dataset is collected
from two different cities in Europe using Google Maps Platform.
The results show that UA-CNN significantly outperforms the state-
of-the-art SISR baselines by reconstructing satellite images with
higher perception quality under various evaluation scenarios.

The main contributions of this paper are summarized below:

• We develop an UA-CNN framework to address the single-
image super-resolution problem in remote sensing.
• We develop a hybrid duo-branch neural network architec-
ture (Duo-CNN) in UA-CNN to reconstruct the images with
a high perceptual quality.
• We integrate an uncertainty quantification model with deep
neural networks in UA-CNN to improve the quality of the
reconstructed images.
• We perform extensive experiments to evaluate the UA-CNN
through a real-world case study and the results demonstrate
significant performance gains of our scheme compared to
state-of-the-art SISR baselines.

2 RELATEDWORK
2.1 Remote Sensing
In recent times, remote sensing has received a significant amount
of attention, enabling many applications that capture different phe-
nomena occurring on the earth [10]. Several studies have leveraged
remote sensing in the realms of precision agriculture [33], traffic
risk identification [51], and urban behavior observation [38]. For ex-
ample, Cervone et al. developed a machine learning based disaster
damage assessment by fusing satellite imagery with Twitter data [8].
Müller et al. utilized satellite imagery to assess the latent effects of
conflict and human migration over the hydrological process of a
river basin [34]. Zou et al. proposed a deep learning based feature
selection for scene classification of satellite imagery [52]. Several
important challenges prevail in current remote sensing applications.
Examples include data irregularity [7], image obscurity due to cloud
cover [9], privacy concerns [43], and noise propagation [2]. The
single-image super-resolution task using low-resolution satellite
imagery data remains to be an open and challenging problem in re-
mote sensing. In this paper, we design a novel UA-CNN framework



to address this problem by developing novel convolutional neural
network architectures and uncertainty quantification mechanisms.

2.2 Super-Resolution
Current solutions to the super-resolution problem can be classified
into two categories: conventional and deep learning approaches [11,
20, 26, 27, 30, 36, 44]. Conventional approaches: Lukin et al. explored
a regularization-based image interpolation method for image en-
hancement by using filtering and convergence techniques on multi-
ple degraded resolution images [30]. Shen et al. proposed a special-
ized super-resolution reconstruction algorithm for multiple images
obtained from a satellite sensor called MODIS (Moderate Resolution
Imaging Spectroradiometer) and applied a linear transformation
approach to recover image features [36]. Yang et al. presented a
morphing-based super-resolution method that leverages the com-
plementary information contained in different sub-pixels (i.e., a
denomination of a pixel) among multiple low-resolution frames
to construct a single high-resolution image [44]. Deep Learning
approaches: Dong et al. proposed a conventional neural network
approach to upscale low-resolution images to high-resolution ones
through the bicubic interpolation and refine the generated images
through three layers of convolution operations [11]. Ledig et al.
developed a generative adversarial network framework to generate
photo-realistic high-resolution images from corresponding low-
resolution images through an optimization process regularized by
adversarial and perceptual losses [26]. Lee et al. designed a deep
residual network approach to improve the quality of the generated
high-resolution images using a set of optimized residual blocks [27].

However, we found the above approaches cannot solve our SISR
problem well because they often failed to provide the assured per-
ceptual quality of the reconstructed high-quality satellite images
in remote sensing. More importantly, none of these solutions ef-
fectively quantified the uncertainty of the estimated RGB values
in the reconstructed satellite images. In this paper, we develop
an uncertainty-aware SISR scheme that integrates the uncertainty
quantification model with the deep convolutional neural networks
to provide high-resolution reconstructed satellite images with qual-
ity assurance.

2.3 Uncertainty-Aware Deep Learning
Our work is also related to the uncertainty-aware deep learning
techniques, which have been studied in many areas such as rein-
forcement learning, computer vision, image generation, and Internet-
of-Things (IoT) [18, 40, 46, 47]. For example, Houthooft et al. de-
signed a curiosity-driven exploration strategy for high-dimensional
deep reinforcement learning by incorporating variational infer-
ence in Bayesian neural networks [18]. Yasarla et al. proposed a
multi-scale residual learning framework based on cycle spinning
that gauges the uncertainty of prediction to learn optimized model
weights for image de-raining tasks [47]. Tang et al. developed a
multi-channel generative adversarial network that leverages cas-
caded semantic uncertainty to improve the performance of the
cross-view image translation [40]. Yao et al. introduced a deep
learning based uncertainty estimation approach to evaluate the
reliability of sensory inference data using implicit Bayesian approx-
imation [46]. However, a unique challenge in satellite-based remote

imagery is the need for perceptual quality assurance, for which the
existing solutions on uncertainty quantification are not designed
to address. In contrast, the UA-CNN framework is the first work
that aims to leverage the quantified uncertainty to reconstruct a
high-resolution satellite image from a low-resolution image with
high perceptual quality.

3 PROBLEM DESCRIPTION
In this section, we formally define the single-image super-resolution
problem in remote sensing. We first define a few key terms that
will be used in the problem statement.

Definition 3.1. Sensing Cell: Given a studied area (e.g., a city)
where we collect the satellite imagery data for the super-resolution
task, we first divide the studied area into disjoint sensing cells. Each
cell represents a subarea of interest (e.g., 250m × 250m as shown in
Figure 2). In particular, we define N to be the number of sensing
cells in the studied area and n to be the nth sensing cell.

Definition 3.2. Low-Resolution Satellite Image (L): we define
L to be the satellite image (e.g., historical satellite imagery data) from
each sensing cell collected in a specific remote sensing application.
The low-resolution satellite image is usually in a relatively low
spatial resolution (e.g., 112×112 resolution for a sensing cell as
shown in (A) of Figure 2). In particular, we define Ln to represent
the low-resolution satellite image collected from the sensing cell n.

Definition 3.3. High-Resolution Satellite Image (H ): We de-
fine H to be the high-resolution satellite image for each sensing
cell, which has a relatively high resolution (e.g., 224×224 resolution
for a sensing cell as shown in (B) of Figure 2). The high-resolution
satellite images often provide more fine-grained details of the ob-
jects (e.g., clear building outlines and road edges). In particular, we
define Hn to be the actual high-resolution satellite image of the
sensing cell n.

Definition 3.4. ReconstructedHigh-Resolution Satellite Im-
age (Ĥ ): We also define Ĥ to be the reconstructed high-resolution
satellite image, which is generated by our super-resolution scheme
from the corresponding low-resolution satellite image L. In partic-
ular, we define Ĥn to represent the reconstructed high-resolution
satellite image for the sensing cell n and our goal is to ensure the
reconstructed satellite image is as close to the actual high resolution
satellite image Hn as possible.

Figure 2: Low and High Resolution Satellite Images



Definition 3.5. Uncertainty Matrix (Σ): Let us consider the er-
ror between the actual and reconstructed high resolution satellite
images (i.e.,H and Ĥ ), where such an estimation error often follows
a normal distribution [24]:

H − Ĥ ∼ N(0, Σ2) (1)

where H − Ĥ is the matrix to represent the error of estimated RGB
values at all pixels in the image. Σ is the uncertainty matrix that
represents the standard deviation of the estimation errors. Such an
uncertainty matrix is essential to refine the reconstructed satellite
image Ĥ to achieve the desired perceptual image quality, which
will be discussed in detail in next section.

Definition 3.6. Perceptual Quality: To evaluate the quality of
Ĥ , we use the state-of-the-art perceptual metric [50] to quantify the
perceptual difference between the actual and reconstructed satellite
images as follows:

Φ(H , Ĥ ) = Γ[Θ(H ) − Θ(Ĥ )] (2)
where we set the Φ(·) to represent the perceptual metric. Θ(H ) and
Θ(Ĥ ) represents the extracted deep feature vectors from the actual
and reconstructed satellite images using ImageNet-trained deep
convolutional neural networks (e.g., VGG [37]). Γ(·) is a function
to calculate the difference between two deep feature vectors (e.g.,
Mean Squared Error (MSE), Mean Absolute Error (MAE)). This
metric has been proven to be robust in capturing perceptual quality
of images [6, 23].

The goal of the single-image super-resolution problem in remote
sensing is to accurately reconstruct the high-resolution satellite
image for each sensing cell from the collected low-resolution satel-
lite image in that cell. Using the definitions above, our problem is
formally defined as:

argmin
Ĥn

(Γ[Θ(Hn ) − Θ(Ĥn )] | Ln ), ∀1 ≤ n ≤ N (3)

It is a challenging problem to reconstruct such a high-resolution
satellite image with desired perceptual quality given the excessive
fine-grained details in each satellite image, and the fuzzy and inade-
quate visual evidence provided by the input low-resolution satellite
image. In this paper, we develop an UA-CNN scheme to address
these challenges, which is elaborated in the next section.

4 SOLUTION
In this section, we present the UA-CNN framework to address the
super-resolution problem formulated above. We first present an
overview of the framework and then discuss its components in
details.

4.1 Overview of UA-CNN Framework
UA-CNN is an uncertainty-aware convolutional neural network
framework to address the SISR problem in remote sensing. The
overview of the UA-CNN framework is shown in Figure 3. It consists
of two major components:
• Uncertainty-aware Duo-CNN Architecture: it constructs two
effective yet complementary convolutional neural network
architectures (i.e., pre-upscaling and pos-upscaling networks)

to reconstruct the high-resolution satellite images and infer
the uncertainty matrices.
• Uncertainty-driven Satellite Imagery Ensemble: it leverages
the estimated uncertainty matrices from the Duo-CNN com-
ponent to ensemble the satellite images generated by both
pre-upscaling and pos-upscaling networks to further improve
the perceptual quality of the reconstructed images.

Figure 3: Overview of UA-CNN framework

4.2 Uncertainty-Aware Duo-CNN Architecture
In this subsection, we present the Duo-CNN architecture design
in our framework. The Duo-CNN constructs two convolutional
neural network architectures to 1) reconstruct the high-resolution
satellite images, and 2) infer the uncertaintymatrices to quantify the
accuracy of the estimated RGB values in the reconstructed images.
In particular, we employ two neural network design strategies in
Duo-CNN: pre-upscaling and post-upscaling. In pre-upscaling, it first
scales the resolution of a low-resolution image to a high-resolution
one (we refer to the process as upscaling) and then refines the
generated high-resolution image to remove noise [14]. In post-
upscaling, it first extracts and refines the semantic features from a
low-resolution satellite image and then scales the refined semantic
features to a high-resolution image [39]. The pre-upscaling can
often effectively reduce the noise but is more likely to ruin the
structure integrity (e.g., making building outlines fuzzier) in the
reconstructed images. The post-upscaling often has an opposite
effect on the images compared to the pre-scaling (i.e., successfully
preserving the structure integrity while introducing the noise).
Our Duo-CNN framework integrates both pre-upscaling and post-
upscaling to reconstruct the satellite images to explore the benefits
from both networks to improve the image quality.We define the two
types of convolutional neural networks of our design as follows:

Definition 4.1. Pre-upscaling Network (Pre-Net): We define
Pre-Net to be a pre-upscaling convolutional neural network archi-
tecture to reconstruct the high-resolution image Ĥpre and generate
the corresponding uncertainty matrix Σpre as follows:

⟨Ĥpre , Σpre ⟩ = Pre-Net(L) (4)



Table 1: Parameter Details of Pre-Net Architecture.

Module Operation Kernel Size Padding Input Channel Output Channel
Bicubic Interpolation N/A N/A N/A 3 3

Image Encoding

Reflection Pad N/A 4 3 3
Convolution 9 N/A 3 64
Reflection Pad N/A 0 64 64
Convolution 1 N/A 64 32

Image Decoding Reflection Pad N/A 2 32 32
Convolution 5 N/A 32 3

Uncertainty Matrix Generation Reflection Pad N/A 2 32 32
Convolution 5 N/A 32 1

where L is the low-resolution satellite image as the input to Pre-Net.

An example of the pre-upscaling network architecture and the
associated model parameters are illustrated in Figure 4 and Table 1,
respectively. In particular, it includes four different modules: a bicu-
bic interpretation (BI) module, an image encoding module, an image
decoding module, and an uncertainty matrix generation module. In
the bicubic interpolationmodule, a bicubic interpolation operation 1

is applied to upscale a low-resolution image to a high-resolution
one. The image encoding module contains a set of ReflectionPad-
Convolution-Relu operations [21] to convert the upscaled satellite
images to semantic feature representations and filters out the noise
introduced by the bicubic interpolation process. Finally, the out-
puts of image encoding module are fed in parallel into both the
image decoding and uncertainty matrix generation modules. The
image decoding module converts the de-noised semantic feature
representations to the reconstructed satellite images and the uncer-
tainty matrix generation module generates the uncertainty matrix
of the RGB values in the reconstructed images. Given the above
pre-upscaling network architecture, our next question is how to
define a loss function for our model to generate the high-resolution
reconstructed images together with the uncertainty matrices.

Figure 4: Illustration of Pre-upscaling Network (Pre-Net)

To that end, we define the loss function Lpre for our Pre-Net
that contains two sub-loss functions as follows:

Lpre : min
(
L
pre
reconstruct + L

pre
uncertain

)
(5)

1Bicubic interpolation is a conventional interpolation operation for image upscaling
that fills an empty pixel by leveraging the RGB values from its neighboring pixels [20].

where Lpre
reconstruct is the first sub-loss function to ensure our Pre-

Net generates the high quality reconstructed images Ĥpre , and
L
pre
uncertain is the second sub-loss function to ensure our Pre-Net

derives accurate uncertainty matrix Σpre . In particular, we first
define the first sub-loss function Lpre

reconstruct as follows:

L
pre
reconstruct : min

(
Lperceptual(H , Ĥpre ) + Lpixel(H , Ĥpre )

)
(6)

where Lperceptual(H , Ĥpre ) is the perceptual loss [50] to quantify
the perceptual difference between the actual and reconstructed
images. Lpixel(H , Ĥpre ) is the Mean Squared Error (MSE) loss [35]
to measure the pixel-wise RGB value difference between the actual
and reconstructed images, which is used to reduce the pixel-wise
noise in Pre-Net.

Next, we formulate a maximum likelihood estimation problem
to derive the second sub-loss function Lpre

uncertain. Our goal is to esti-
mate the uncertainty matrix Σpre given the difference between the
actual and reconstructed satellite images (i.e., (H - Ĥpre ) as defined
in Definition 3.5). By observing such an estimation discrepancy
often follows a normal distribution [24], we derive the likelihood
function of our estimation as follows:

L(Σpre |H−Ĥpre ) = (2π | |Σpre | |2)−
1
2 exp(−

1
2| |Σpre | |2

| |H−Ĥpre | |2)

(7)
We can then derive the log-likelihood function accordingly:

loдL(Σpre |H−Ĥpre ) = −
1
2
loд2π−

1
2
loд | |Σpre | |2−

1
2| |Σpre | |2

| |H−Ĥpre | |2

(8)
Our goal is to maximize loдL(Σpre |H − Ĥpre ) to obtain an accurate
uncertainty matrix estimation. This leads to the definition of the sec-
ond sub-loss function Lpre

uncertain as the negation of loдL(Σpre |H −
Ĥpre ):

L
pre
uncertain : min

(
1
2
loд | |Σpre | |2 +

1
2| |Σpre | |2

| |H − Ĥpre | |2 +
1
2
loд2π

)
(9)

By minimizing the loss function Lpre
uncertain, we can obtain the opti-

mal uncertainty matrix Σpre that maximizes the above likelihood
function L(Σpre |H − Ĥpre ).

Definition 4.2. Post-upscaling Network (Pos-Net): We define
Pos-Net to be a post-upscaling convolutional neural network archi-
tecture to reconstruct the high-resolution image Ĥpos and generate



Table 2: Parameter Details of Pos-Net Architecture.

Module Operation Kernel Size Padding Input Channel Output Channel

Image Encoding ReflectionPad N/A 4 3 3
Convolution 9 N/A 3 64

Residual Block 5 × Residual blcoks 3 1 64 64
Pixel Shuffle 3 1 64 64

Image Decoding ReflectionPad N/A 2 64 64
Convolution 5 N/A 64 3

Uncertainty Matrix Generation ReflectionPad N/A 1 64 64
Convolution 3 N/A 64 1

the corresponding uncertainty matrix Σpos as follows:

⟨Ĥpos , Σpos ⟩ = Pos-Net(L) (10)

where L is the low-resolution satellite image as the input to Pos-Net.

An example of the post-upscaling network architecture and as-
sociated model parameters are illustrated in Figure 5 and Table 2,
respectively. In particular, it also includes four different modules:
an image encoding module, a residual block module, an image
decoding module, and an uncertainty generation module. Differ-
ent from the Pre-Net, the image encoding module directly takes
the low-resolution image as the input and extracts the semantic
feature representations from the images. This is done to ensure
the structure integrity in the reconstructed satellite images. The
residual block module has multiple residual blocks [17] to segment
individual objects of an image and apply augmented contents to
improve the resolution of the identified objects. Similar to Pre-Net,
the upscaled semantic feature representations of the image are
simultaneously fed into two parallel output modules, i.e., image
decoding and uncertainty matrix generation modules, where the
outputs are the reconstructed satellite image and the corresponding
uncertainty matrix.

Figure 5: Illustration of Post-upscaling Network (Pos-Net)

Similar to Pre-Net, we define the loss function Lpos for our
Pos-Net that contains two sub-loss functions to generate the recon-
structed image Ĥpos and the uncertainty matrix Σpos as:

Lpos : min
(
L
pos
reconstruct + L

pos
uncertain

)
(11)

where Lpos
reconstruct is defined as:

L
pos
reconstruct : minLperceptual(H , Ĥpos ) (12)

Note that we only consider the perceptual loss in Pos-Net and
ignore the pixel-wise MSE loss. This is done to enforce the Pos-Net
to focus on generating images with high perceptual quality that
preserves the structure integrity. In addition, we define the sub-loss
function Lpos

uncertain in a similar way as the Pre-Net:

L
pos
uncertain : min

(
1
2
loд | |Σpos | |2 +

1
2| |Σpos | |2

| |H − Ĥpos | |2 +
1
2
loд2π

)
(13)

4.3 Uncertainty-driven Satellite Imagery
Ensemble

In this subsection, we leverage the estimated uncertainty matrices
(Σpre and Σpos ) output by the Duo-CNN networks to guide the
ensemble of the satellite images generated by the pre-upscaling and
post-upscaling networks (i.e., Ĥpre and Ĥpos ) to further improve
the quality of the reconstructed images. We first define a key term
in our ensemble mechanism as follows.

Definition 4.3. Combined High-Resolution Satellite Image
(Ĥcombine ): We define Ĥcombine to be a high-resolution satellite
image, where the RGB value at each pixel is a combination of the
RGB values from the reconstructed satellite images (Ĥpre and Ĥpos )
generated from Pre-Net and Pos-Net as follows:

Ĥcombine = (1 − Λ) · Ĥpre + Λ · Ĥpos (14)

where Λ is a matrix to indicate the weights of each component at
all pixels in the combined high-resolution image.

The key question now is how to derive the values inΛ to optimize
the quality of the combined satellite image Ĥcombine . To address
this problem, we first consider the probabilistic model for the error
between the actual and reconstructed satellite images generated by
Duo-CNN as defined in Equation 1. We perform a random variable
transformation to obtain the probabilistic models for the RGB values
in the reconstructed images (i.e., Ĥpre ∼ N(H , Σ

2
pre ) and Ĥpos ∼

N(H , Σ2pos )). Using these models, we can derive the distribution of
Ĥcombine in Equation (14) as follows:

Ĥcombine ∼ N((1 − Λ) · H , ((1 − Λ) · Σpre )2) +N(Λ · H , (Λ · Σpos )2)
(15)

We consider the ensemble mechanism to be optimized when
the Pro-Net and Pos-Net share the maximum agreement in the
estimation confidence/uncertainty of the pixel-wise RGB values in
the reconstructed satellite image [1]. We enforce such an agreement
by setting the variances of the two networks to be the same:



Figure 6: An Example of the Combined High-Resolution Image Generated by UA-CNN

((1 − Λ) · Σpre )2) = (Λ · Σpos )2 (16)
We can then derive the value of Λ as follows:

Λ =
Σ−1pos

Σ−1pre + Σ−1pos
(17)

We plug the derived Λ value into Equation (14) as follows:

Ĥcombine =
Σ−1pre

Σ−1pre + Σ−1pos
· Ĥpre +

Σ−1pos

Σ−1pre + Σ−1pos
· Ĥpos (18)

where Ĥcombine is the final output of our UA-CNN framework.
We further define a loss function Lcombine to ensure the per-

ceptual quality of the combined satellite image generated by the
uncertainty-driven satellite imagery ensemble mechanism:

Lcombine : minLperceptual(H , Ĥcombine ) (19)

where Lperceptual(H , Ĥcombine ) is the loss function to measure the
perceptual difference between the actual and reconstructed satellite
images as discussed in the previous subsection.

An example of the combined satellite image generated by our
UA-CNN framework is shown in Figure 6. First, we observe that
the Pre-Net effectively reduces the noise from the input image but
introduces a certain amount fuzziness into the reconstructed image.
However, the fuzzy areas (e.g., building outlines) are accurately
captured by the uncertainty matrix Σpre as shown in the figure 2.
Similarly, we observe that the Pos-Net successfully preserves the
structure integrity but introduces a noticeable amount of noise
(i.e., white dots in the figure). However, the noisy points are also
accurately captured by the uncertainty matrix Σpost . Finally, we
observe that the combined satellite image achieves an clearly im-
proved perceptual quality compared to the input image as well as
the reconstructed images from both Pre-Net and Post-Net.

Finally, we briefly summarize the optimization process of our
UA-CNN framework to learn the optimal parameters of Pre-Net and
Pos-Net (i.e., Pre-Net* and Pos-Net*) based on the loss functions
defined above. We first define an aggregated loss function Loverall
for our UA-CNN framework as:

Loverall : min
(
Lpre + Lpos + Lcombine

)
(20)

The aggregated loss function combines the loss functions de-
fined in each component of UA-CNN: i.e., Lpre (Equation (5)), Lpos

2A darker color of a pixel in the uncertainty matrix graph indicates a higher degree of
uncertainty for the generated RGB value of the corresponding pixel in the reconstructed
image.

(Equation (11)), and Lcombine (Equation (19)). By minimizing the
aggregated loss, we ensure both Pre-Net and Pos-Net generate high
quality reconstructed satellite images, which is used to generated
the combined high-resolution satellite images. The loss function
Loverall can be optimized using the Adaptive Moment Estimation
(Adam) optimizer [25], which obtains the optimal parameters of
both upscaling networks PosNet∗ and PreNet∗.

We summarize the UA-CNN framework in Algorithm 1. The in-
put to the framework is the low-resolution satellite image L for each
sensing cell. The output is the combined high-resolution satellite
image Ĥ for each sensing cell.

Algorithm 1 Summary of the UA-CNN Framework
1: input:L
2: output:Ĥ
3: initialize Pre-Net (Definition 4.1)
4: initialize Pos-Net(Definition 4.2)
5: epoch← 0
6: while epoch < ∆ do
7: calculate Lpre (Equation (5))
8: calculate Lpos (Equation (11))
9: calculate Lcombine (Equation (19))
10: calculateLoverall (Equation (20))
11: optimize Loverall using Adam optimizer
12: update Pre-Net
13: update Pos-Net
14: epoch← epoch + 1
15: end while
16: set current Pre-Net as Pre-Net*
17: set current Pos-Net as Pos-Net*
18: generate Ĥpre , Σpre from L (Equation (4))
19: generate Ĥpos , Σpos from L (Equation (10))
20: generate Ĥcombine (Equation (18))
21: output Ĥcombine as Ĥ

5 EVALUATION
In this section, we evaluate the performance of the UA-CNN scheme
using the real-world satellite imagery data collected from two dif-
ferent cities in Spain, a region with diversified land features [38],
through the publicly available Google Maps Platform. We compare
the performance of UA-CNN with state-of-the-art conventional and
deep learning schemes for single-image super-resolution task in
2∆ is usually set to be a large number (i.e., larger than 500) to ensure learned model
quality. The training process also stops when Loverall is stable on validation set.



remote sensing. The results show that UA-CNN consistently out-
performs the baselines by achieving the least perception errors in
reconstructing high-resolution satellite images.

5.1 Dataset
In our experiment, we collect real-world satellite imagery datasets
from two different cities in Spain (i.e., Barcelona and Madrid) that
belong to three diversified land usage classes (i.e., urban fabric, for-
est and green land, and transportation as shown in Figure 7). These
classes have distinct visual and semantic characteristics (e.g., ob-
ject layout and density, color distributions and complexity), which
present a challenging evaluation scenario for the SISR problem we
studied. We summarize the datasets as follows.

Google Maps Satellite Imagery Dataset: We collect the satel-
lite imagery datasets from Barcelona andMadrid using Google Map
Platform 3. In our evaluation, each collected original satellite im-
age is in 224×224 resolution with a 250m×250m ground coverage,
which is considered as the high resolution satellite image in our
evaluation [4]. In addition, we adopt the widely-used bicubic inter-
pretation tool implemented in scikit-image package 4 to reduce the
resolution of each original satellite image by 4 times as the low res-
olution satellite image in our experiment (i.e., each low-resolution
satellite image is in 112×112 resolution as shown in Figure 2). In
addition, we use the Urban Atlas dataset published by the European
Environment Agency 5 to determine the land usage classes for all
collected satellite images. Finally, we randomly select 1,200 high
and low satellite images (i.e., 600 from each category) from the
studied area for our experiments.

Figure 7: Examples of Satellite Imagery Data in Different
Land Usage Classes

5.2 Baselines
We compare UA-CNN with the state-of-the-art conventional and
deep learning baselines that are used to solve the SISR problem.

(1) Conventional Models
• Nearest-neighbour (NN) [19]: it is a conventional image
upscaling scheme that fills each empty pixel with the same
RGB value as the nearest available neighboring pixel.
• Bi-linear/quadratic/cubic [20]: it is a set of super reso-
lution scheme that leverages the bi-linear/quadratic/cubic
interpolation technique to generate an estimated RGB
value for each empty pixel from its neighboring pixels.

3https://developers.google.com/maps/documentation/
4https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.
resize
5https://www.eea.europa.eu/data-and-maps/data/urban-atlas/

(2) Deep Learning Models
• SR-CNN [11]: it utilizes the bi-cubic interpolation and
conventional neural networks to generate the high-resolution
image with a dedicated image refining process to improve
the quality of reconstructed images.
• SR-GAN [26]: it imposes a generative adversarial net-
work architecture that utilizes an image generator net-
work and an image discriminator network to refine the
reconstructed high-resolution images.
• SR-ResNet [27]: it is a deep convolutional neural net-
work that leverages multiple residual blocks with skip-
connection to capture the complex mapping between the
low and high-resolution satellite images in the image re-
construction process.

5.3 Evaluation Metrics and Settings
To evaluate the performance of all compared schemes, we use the
perceptual metric (discussed in Definition 3.6), which has proven
to be an accurate metric that is close to human perception in the re-
cent computer vision studies [6, 23, 50]. In particular, the perceptual
metric evaluates the image quality by comparing the difference be-
tween the deep features extracted from the actual and reconstructed
satellite images using the ImageNet-trained deep convolutional
neural networks (e.g., VGG [37]). Following [6, 50], we use three
commonly used deep features extracted by the 1st , 2nd , 3rd con-
volutional layers of the 4th convolutional block in VGG model
(namely, VGG4−1, VGG4−2, VGG4−3). In addition, we adopt three
error computing functions (i.e., Γ(·) in Definition 3.6): i) Mean Ab-
solute Error (MAE); ii)Mean Squared Error (MSE); iii) Log-Cosh Error
(LCE) [16] to calculate the difference between the deep features
extracted from the actual and reconstructed satellite images. This is
to ensure a comprehensive and robust evaluation of all compared
schemes (e.g., MSE is robust in evaluating large errors, MAE is sensi-
tive to small errors, and Log-Cosh achieves a balance between MSE
and MAE). Intuitively, a lower value in the error metric represents a
higher perceptual quality and a better visual similarity between the
actual and reconstructed satellite images, which indicates a better
super-resolution performance.

In our experiment, we randomly sample 70% satellite images as
training dataset and 10% satellite images as validation dataset to
tune hyper-parameters of all compared algorithms. We then use the
rest 20% satellite images as testing dataset to evaluate the perfor-
mance of all compared algorithms. In addition, all hyper-parameters
are optimized using the Adam optimizer [25]. In particular, we set
the learning rate to be 1e-4 and set the batch size to be 1 in our
experiment. In addition, the model is trained over 500 epochs for
all compared schemes.

5.4 Evaluation Results on Perceptual Quality
Evaluation results on urban fabric: In the first set of exper-
iments, we study the performance of all compared schemes in
Barcelona andMadrid, where the land usage class of images is urban-
fabric. The evaluation results are presented in Table 3 and Table 4.
We observed that the UA-CNN scheme consistently outperforms
all compared baselines across different deep features. For example,

https://developers.google.com/maps/documentation/
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.resize
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.resize
https://www.eea.europa.eu/data-and-maps/data/urban-atlas/


Table 3: Performance Comparisons (Class = Urban Fabric, City = Barcelona)

Deep Feature = VGG4−1 Deep Feature = VGG4−2 Deep Feature = VGG4−3

Category Algorithm MAE MSE LCE MAE MSE LCE MAE MSE LCE

Nearest-neighbor 1.1546 4.9464 0.8768 0.6487 2.5650 0.4842 0.4962 1.6637 0.3524

Conventional Bi-linear 1.1396 5.0302 0.8689 0.6442 2.6017 0.4812 0.4891 1.6467 0.3458

Model Bi-quadratic 1.1091 4.7499 0.8404 0.6222 2.4396 0.4619 0.4703 1.5286 0.3295

Bi-cubic 1.1125 4.7782 0.8435 0.6253 2.4584 0.4645 0.4730 1.5450 0.3319

SR-CNN 1.1138 4.5774 0.8375 0.6190 2.3757 0.4588 0.4634 1.4894 0.3253

Deep Learning SR-GAN 1.0551 4.2401 0.7855 0.5780 2.1161 0.4210 0.4321 1.3126 0.2967

Model SR-ResNet 1.0601 4.2572 0.7894 0.5800 2.1250 0.4226 0.4346 1.3255 0.2989

Our Model UA-CNN 1.0198 3.9821 0.7532 0.5563 1.9747 0.4016 0.4160 1.2291 0.2830

Table 4: Performance Comparisons (Class = Urban Fabric, City = Madrid)

Deep Feature = VGG4−1 Deep Feature = VGG4−2 Deep Feature = VGG4−3

Category Algorithm MAE MSE LCE MAE MSE LCE MAE MSE LCE

Nearest-neighbor 1.2060 5.3422 0.9240 0.6962 2.8903 0.5274 0.5247 1.9278 0.3817

Conventional Bi-linear 1.2458 5.9456 0.9678 0.7152 3.1382 0.5460 0.5293 1.9538 0.3838

Model Bi-quadratic 1.2084 5.5693 0.9324 0.6893 2.9282 0.5229 0.5088 1.8113 0.3658

Bi-cubic 1.2132 5.6149 0.9369 0.6934 2.9572 0.5265 0.5121 1.8341 0.3688

SR-CNN 1.1604 4.9477 0.8813 0.6519 2.6021 0.4890 0.4814 1.6420 0.3441

Deep Learning SR-GAN 1.1130 4.6791 0.8391 0.6157 2.3641 0.4549 0.4538 1.4706 0.3182

Model SR-ResNet 1.1088 4.6512 0.8355 0.6144 2.3512 0.4538 0.4525 1.4598 0.3171

Our Model UA-CNN 1.0548 4.2422 0.7860 0.5798 2.1204 0.4227 0.4253 1.3131 0.2937

the performance gains of UA-CNN over the best-performing base-
line (i.e., SR-GAN) in Barcelona with the deep feature extracted by
VGG4−1 on MAE, MSE, and LSE are 3.46%, 6.47%, and 4.28%, re-
spectively. Such performance gains mainly come from the fact that
UA-CNN judiciously learns the uncertainty of the estimated RGB
values in the reconstructed high-resolution satellite image through
an integrated Duo-CNN and MLE hybrid design. The obtained
uncertainty matrix is explicitly used to guide the reconstruction
of the combined satellite image from the ones generated by both
pre-upscaling and post-upscaling networks.

Evaluation results on forest and green land and transporta-
tion: In addition to urban fabric, we also evaluate the performance
of all schemes over the forest and green land and transportation
land classes in both Barcelona and Madrid. Our objective here is
to evaluate whether UA-CNN and the baselines are capable of pro-
viding reliable super-resolution results across completely different
land usage classes. The evaluation results are shown in Table 5 to
Table 8. We observe that UA-CNN continues to outperform all base-
lines over both the forest and green land and transportation classes
in the two cites. For example, the performance gains achieved by
UA-CNN compared to the best-performing baseline (i.e., SR-GAN)
in the forest and green land class in Madrid with the deep feature
extracted by VGG4−2 on MAE, MSE, and LSE are 3.87%, 7.16%, and

4.99%, respectively. Similar performance gains are also observed in
the transportation class in both cities. Such consistent performance
gains demonstrate the effectiveness and robustness of UA-CNN
in learning the accurate uncertainty matrices to guide the convo-
lutional neural networks to output high-quality super-resolution
results across diversified classes of land usage in remote sensing
applications. We also observe that all compared schemes tend to
have lower perception errors in the forest and green land class com-
pared to the other two classes. This is mainly because that the forest
and green land class often has much less complex object layouts
and color distributions than other classes (as shown in Figure 7),
making it an easier super-resolution task for all compared schemes.

Cosine similarity for all compared schemes. In our exper-
iment, we also adopt the cosine similarity [48] to measure the
similarity between the deep features extracted from the actual and
reconstructed satellite images for all compared schemes. The co-
sine similarity is known to be more robust than the distance-based
evaluation metrics (e.g., MSE) to the curse of dimensionality prob-
lem (i.e., the high-dimensional deep feature vectors extracted from
satellite images) [32]. Intuitively, a higher cosine similarity score
represents a higher visual similarity between the actual and recon-
structed satellite images, which provides an alternative and more
intuitive perspective to evaluate the performance of all schemes.



Table 5: Performance Comparisons (Class = Forrest and Green Land, City = Barcelona)

Deep Feature = VGG4−1 Deep Feature = VGG4−2 Deep Feature = VGG4−3

Category Algorithm MAE MSE LCE MAE MSE LCE MAE MSE LCE

Nearest-neighbor 0.7527 2.4017 0.5255 0.4763 1.2522 0.3115 0.3819 0.9518 0.2422

Conventional Bi-linear 0.6964 2.1695 0.4819 0.4325 1.0525 0.2741 0.3276 0.6925 0.1953

Model Bi-quadratic 0.6865 2.0991 0.4726 0.4233 1.0136 0.2670 0.3195 0.6589 0.1888

Bi-cubic 0.6890 2.1160 0.4750 0.4261 1.0246 0.2692 0.3219 0.6692 0.1909

SR-CNN 0.6943 2.1025 0.4757 0.4280 1.0362 0.2716 0.3168 0.6529 0.1879

Deep Learning SR-GAN 0.6193 1.7065 0.4098 0.3690 0.7846 0.2205 0.2712 0.4907 0.1508

Model SR-ResNet 0.6180 1.7003 0.4088 0.3677 0.7788 0.2194 0.2701 0.4876 0.1501

Our Model UA-CNN 0.5991 1.6046 0.3923 0.3554 0.7351 0.2099 0.2617 0.4608 0.1436

Table 6: Performance Comparisons (Class = Forrest and Green Land, City = Madrid)

Deep Feature = VGG4−1 Deep Feature = VGG4−2 Deep Feature = VGG4−3

Category Algorithm MAE MSE LCE MAE MSE LCE MAE MSE LCE

Nearest-neighbor 1.0164 4.0094 0.7545 0.6208 2.2225 0.4501 0.4795 1.5691 0.3359

Conventional Bi-linear 0.9579 3.7372 0.7072 0.5729 1.9716 0.4086 0.4240 1.2430 0.2864

Model Bi-quadratic 0.9363 3.5478 0.6868 0.5559 1.8635 0.3940 0.4108 1.1667 0.2750

Bi-cubic 0.9394 3.5738 0.6897 0.5590 1.8807 0.3966 0.4133 1.1809 0.2772

SR-CNN 0.9445 3.4894 0.6890 0.5549 1.8315 0.3930 0.4037 1.1477 0.2715

Deep Learning SR-GAN 0.8396 2.8780 0.5964 0.4802 1.4159 0.3257 0.3458 0.8608 0.2206

Model SR-ResNet 0.8483 2.9354 0.6042 0.4847 1.4428 0.3298 0.3487 0.8744 0.2231

Our Model UA-CNN 0.8095 2.6945 0.5695 0.4623 1.3212 0.3102 0.3328 0.8036 0.2098

The results are shown in Figure 8. We observe that our UA-CNN
scheme is able to achieve the highest cosine similarity score in all
evaluation scenarios. Such performance gains further validate the
effectiveness of our UA-CNN scheme in reconstructing satellite
images with better quality than the state-of-the-art baselines.

6 CONCLUSION
In this paper, we develop an UA-CNN approach to address the
single-image super-resolution problem in remote sensing applica-
tions. In particular, the UA-CNN scheme addresses two intrinsic
challenges (i.e., perceptual quality assurance and uncertainty-aware
super resolution). The UA-CNN scheme incorporates a hybrid duo-
branch neural network design, namely Duo-CNN, to reconstruct
the high-resolution satellite images with perceptual quality assur-
ance from a low-resolution image. Our scheme also integrates an
uncertainty quantification model with deep neural networks to
further improve the quality of the reconstructed images. We evalu-
ate UA-CNN on a real-world remote sensing application involving
land usage classification. The results demonstrate that our UA-CNN
scheme significantly outperforms state-of-the-art baselines in ad-
dressing the SISR problem. The results of this paper are important

because they can directly contribute to a broad set of remote sens-
ing applications that rely on the high-resolution satellite images
that are not always available to the applications (e.g., disaster as-
sessment, poverty prediction, disease outbreak detection).
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Figure 8: Average Cosine Similarity for All Compared Schemes
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